Journal of Computer Science

Content Based Medical Image Retrieval using Binary Association Rules

Akila and Uma Maheswari

DOI : 10.3844/jcssp.2013.678.689

Journal of Computer Science

Volume 9, Issue 6

Pages 678-689

Abstract

In this study, we propose a content-based medical image retrieval framework based on binary association rules to augment the results of medical image diagnosis, for supporting clinical decision making. Specifically, this work is employed on scanned Magnetic Resonance brain Images (MRI) and the proposed Content Based Image Retrieval (CBIR) process is for enhancing relevancy rate of retrieved images. The pertinent features of a query brain image are extracted by applying third order moment invariant functions, which are then examined with the selected feature indexes of large medical image database for appropriate image retrieval. Binary association rules are incorporated here for organizing and marking the significant features of database images, regarding a specific criterion. Trigonometric function distance similarity measurement algorithm is applied to improve the accuracy rate of results. Moreover, the performances of classification and retrieval methods are determined in terms of precision and recall rates. Experimental results reveal the efficacy of the adduced methodology as compared to the related works.

Copyright

© 2013 Akila and Uma Maheswari. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.