Journal of Computer Science

Comparison of Approaches for Predicting Break Indices in Mandarin Speech Synthesis

Shao Yan-qiu, Zhao Yong-zhen, Han Ji-qing and Liu Ting

DOI : 10.3844/jcssp.2006.660.664

Journal of Computer Science

Volume 2, Issue 8

Pages 660-664

Abstract

This study adopts a large-scale corpus with five-tier break indices annotated according to C-TOBI. Based on it, several approaches, N-gram, Markov model and decision tree learning are applied to predict break indices automatically for unrestricted mandarin text. These approaches differ mutually not only in model, but also on features and even part-of-speech tag size. A deep comparison and analysis among these approaches was made in the research.

Copyright

© 2006 Shao Yan-qiu, Zhao Yong-zhen, Han Ji-qing and Liu Ting. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.