Neuroscience International

Stem Cells in Traumatic Brain Injury

Samuel Dobrowolski and Guilherme Lepski

DOI : 10.3844/amjnsp.2013.13.24

Neuroscience International

Volume 4, 2013

Pages 13-24

Abstract

Traumatic Brain Injury (TBI) is a devastating clinical condition that often causes permanent incapacity, especially in the younger population. The clinical relevant of TBI justifies the scientific interest in the pathophysiology of TBI, as well as in protective effects and development of treatment options. Stem cells have the ability to induce neuroprotection and neural repair inflammatory suppression, causing tissue reconstruction completely or partially damaged cells to preventing cell death to evolve. However the neurological improvement observed in preclinical studies and clinical tests based on neurological and behavioral disorders and the mechanism of action of stem cells remains unknown. In this study the authors discuss the current status of using stem cells to treat TBI, including the basic cell types and potential mechanisms of action, preclinical data and points out lack of studies and hurdles for clinical application. The authors also focusing on the recent demonstration that neurogenesis occurs in all mammals throughout adult life, although at a low rate, is possible to induce neurogenesis de novo in the adult mammalian brain, particularly in the neocortex where it does not normally occur and that it may become possible to manipulate endogenous multipotent precursors in situ to replace lost or damaged neurons. Elucidation of the relevant molecular controls may both allow control over transplanted precursor cells and potentially allow the development of neuronal replacement therapies for neurodegenerative disease and other central nervous system injuries that do not require transplantation of exogenous cells. Discuss strategies of enhance the neurogenesis (for example by exogenous tropics factor administration) and the transplantation of different types of neural progenitor cells after TBI. Each strategy is discussed with an emphasis on highlighting the progress and limiting factors relevant to the development of clinical trials of cellular replacement therapy for severe TBI in humans.

Copyright

© 2013 Samuel Dobrowolski and Guilherme Lepski. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.