American Journal of Engineering and Applied Sciences

Highly-Efficient Advanced Thermoelectric Devices from Different Multilayer Thin Films

Satilmis Budak, Zhigang Xiao, Barry Johnson, Jordan Cole, Mebougna Drabo, Ashley Tramble and Chauncy Casselberry

DOI : 10.3844/ajeassp.2016.356.363

American Journal of Engineering and Applied Sciences

Volume 9, Issue 2

Pages 356-363

Abstract

The efficiency of the thermoelectric materials and devices is shown by the dimensionless Figure of merit, ZT. ZT is calculated by multiplying the Seebeck coefficient with square of the electrical conductivity and absolute temperature and dividing it all by the thermal conductivity. Thermoelectric devices were prepared using different multilayered thin film structures in the order of SiO2/SiO2 + Ge/Ge/Sb + Ge/Si/Si + Ge/Ge/Ge + Si by DC/RF Magnetron Sputtering. The prepared thermoelectric devices have been tailored with 5 MeV Si ions bombardment at the different fluences (doses) to form quantum structures in the multilayer thin films to improve the efficiency of the thermoelectric devices. Seebeck coefficients, van der Pauw-four probe resistivity, Hall Effect coefficient, density and mobility have been measured. After the samples were prepared, SEM/EDS data were collected. FIB/SEM images were provided to figure out the cross-section of the fabricated devices. Seebeck coefficients and electrical resistivity results were affected positively if the appropriate ion beam dose was selected.

Copyright

© 2016 Satilmis Budak, Zhigang Xiao, Barry Johnson, Jordan Cole, Mebougna Drabo, Ashley Tramble and Chauncy Casselberry. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.