American Journal of Engineering and Applied Sciences

Improving Medical Imaging and Blood Flow Measurement by using a New Doppler Effect Relationship

Florian Ion T. Petrescu

DOI : 10.3844/ajeassp.2015.582.588

American Journal of Engineering and Applied Sciences

Volume 8, Issue 4

Pages 582-588


The Doppler Effect represents the frequency variation of the waves, received by an observer which is drawing (coming), respectively it’s removing (going), from a wave spring (source). One proposes to study the Doppler Effect for the light waves, generally for the electromagnetic waves. Doppler effect (or Doppler shift), named after Austrian physicist Christian Doppler who proposed it in 1842 in Prague. An important application of the Doppler Effect is the medical imaging and blood flow measurement using color flow ultrasonography (Doppler) of a carotid artery-scanner and screen. An echocardiogram can, within certain limits, produce accurate assessment of the direction of blood flow and the velocity of blood and cardiac tissue at any arbitrary point using the Doppler Effect. One of the limitations is that the ultrasound beam should be as parallel to the blood flow as possible. Velocity measurements allow assessment of cardiac valve areas and function, any abnormal communications between the left and right side of the heart, any leaking of blood through the valves (valvular regurgitation) and calculation of the cardiac output. Contrast-enhanced ultrasound using gas-filled micro bubble contrast media can be used to improve velocity or other flow-related medical measurements. Although “Doppler” has become synonymous with “velocity measurement” in medical imaging, in many cases it is not the frequency shift (Doppler shift) of the received signal that is measured, but the phase shift (when the received signal arrives). Velocity measurements of blood flow are also used in other fields of medical ultrasonography, such as obstetric ultrasonography and neurology. Velocity measurement of blood flow in arteries and veins based on Doppler Effect is an effective tool for diagnosis of vascular problems like stenosis. We may improving medical imaging and blood flow measurement by using a new Doppler Effect relationship, presented in this study. With the new proposed Doppler Effect relationship the precision of calculations increase very much and one may do all the measurements much better.


© 2015 Florian Ion T. Petrescu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.