American Journal of Engineering and Applied Sciences

Photocatalytic Decolourization of Textile Effluent Containing Reactive Red 120 Dye With UV/TiO2

Rishi Ananthashankar and Abdel Ghaly

DOI : 10.3844/ajeassp.2013.252.262

American Journal of Engineering and Applied Sciences

Volume 6, Issue 3

Pages 252-262

Abstract

The efficiency of degradation of an aqueous solution of reactive red 120 dye using Advanced Oxidation Process (AOP) was evaluated. A low pressure UV lamp and a combination of UV/TiO2 were tested using ten different dye concentrations (50 - 500 mg/L) at several retention times (5.2-60 min) a pH of 10.5. The effect of acidic pH (pH = 3) on dye removal efficiency and the Chemical Oxygen Demand (COD) of the treated effluents were also investigated. When the alkaline (pH = 10.5) reactive red 120 dye solutions were treated using a low pressure (380 nm intensity) UV lamp, a maximum degradation efficiency of 27.01% was obtained for the least concentrated dye (50 mg/L) solution and only a degradation efficiency of 0.33% was obtained for the most concentrated (500 mg/L) dye solution. When the alkaline (pH = 10.5) reactive red 120 solutions were exposed to a combination of UV/TiO2, a maximum degradation efficiency of 46.70% was obtained for the lease concentrated (50 mg/L) dye solution after 60 min and only a degradation efficiency of 2.84% was obtained for the most concentrated (500 mg/L) dye solution after 60 min. When the pH of the reactive red 120 dye solution was reduced to 3, a degradation efficiency of 56.45% was obtained for the least concentrated (50 mg/L) dye solution at 60 min and a degradation efficiency of 14.94% was obtained for the most concentrated (500 mg/L) dye solution at 60 min. However, the increase in degradation efficiency obtained in this study does not justify the cost of chemicals added to adjust the pH to 3 before treatment and then to 7 before final disposal. Also, the addition of chemicals (to adjust the pH) increases the COD of the dye solution thereby necessitating a further costly treatment.

Copyright

© 2013 Rishi Ananthashankar and Abdel Ghaly. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.