Current Research in Bioinformatics

Reducing Redundancy of Codons through Total Graph

Nisha Gohain, Tazid Ali and Adil Akhtar

DOI : 10.3844/ajbsp.2015.1.6

Current Research in Bioinformatics

Volume 4, 2015

Pages 1-6

Abstract

In this study some algebraic connections in genetic code is being discussed. The genetic code is the rule by which DNA stores the genetic information about formation of protein molecule. Based on the physico-chemical properties of four RNA (or DNA) bases, two orders in the base sets are obtained. This ordering allows us to define a ring structure on the set of 64 codons. Then the total graph in the genetic code algebra is being discussed. It is shown that transition mutations (purine (A, G) to purine or pyrimidine (C, T) to pyrimidine) on the third base position of codons partitions the whole set of codons into disjoint graphs and thereby generates the total graph of the genetic code. The redundancy of the 64 codons coding for the 20 amino acids is reduced by the total graph.

Copyright

© 2015 Nisha Gohain, Tazid Ali and Adil Akhtar. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.