American Journal of Biochemistry and Biotechnology

MOLECULAR SWITCH THAT CONTROLS THE FLUX OF LINOLEIC ACID INTO N-6 OR N-3 POLYUNSATURATED FATTY ACIDS IN MICROORGANISMS

Mingxuan Wang, Jianxin Chen, Huaiyuan Zhang and Yuanda Song

DOI : 10.3844/ajbbsp.2014.105.115

American Journal of Biochemistry and Biotechnology

Volume 10, Issue 2

Pages 105-115

Abstract

Polyunsaturated Fatty Acids (PUFA) of the n-6 and n-3 series play important roles in nutrition. Microorganisms are important sources of n-6 and n-3 fatty acids; however, most produce either n-6 or n-3 fatty acids as the major PUFAs and very few produce both. This differential production suggests that PUFAs metabolic pathway is strictly controlled in microorganisms. The major pathway of n-6/n-3 faty acids biosynthesis in lower eukaryotes is composed of Δ12 Desaturase (Des), ω3 Des (Δ15, Δ17), Δ6 Des, Δ6 Elongase (Elo), Δ5 Des, Δ5 Elo and Δ4 Des, among which Δ6 Des and Δ15 (ω3) Des, located at the branch point of PUFAs metabolic pathways, are key regulators of the flux of linoleic acid (18:2 n-6) into either n-6 or n-3 fatty acid metabolic pathways. These latter two enzymes work together as a molecular switch that control the production of n-6/n-3 fatty acids. However the mechanism of the molecular switch is, so far, not clear. This review summarizes the recent advancement of the molecular base of the differentail production of n-6 or n-3 PUFAs in microorganisms.

Copyright

© 2014 Mingxuan Wang, Jianxin Chen, Huaiyuan Zhang and Yuanda Song. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.