American Journal of Applied Sciences

Constrained Modified Genetic Algorithm for Optimizing RICE Climate Change Model Policy

Haitham Osman

DOI : 10.3844/ajassp.2017.945.954

American Journal of Applied Sciences

Volume 14, Issue 10

Pages 945-954

Abstract

The objective of this paper is to use evolutionary algorithm for policy making to help in decision support, the Regional Integrated Climate-Economy (RICE) model for the dynamic climate change is used to optimize the tradeoff policy between abating of carbon dioxide emissions to reduce global climate change and in the other hand the resulting in economic damages. A Constrained Genetic Algorithms (CGAs) is modified to search for near global optimal solutions the by searching climate optimum control parameters that resulted in optimal CO2 abatement and temperature reduction with less economic damages. A Comparison study between optimizing the output of GAs with the standard solution revealed that GAs successfully found a better solution, in term of finding optimum values for the carbon prices that lead to more reduction in carbon emission comparing to solutions given by the model developer.

Copyright

© 2017 Haitham Osman. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.