American Journal of Applied Sciences

A Comparison between Different Data Mining Algorithms in Freight Mode Choice

Amir Samimi, Hesamoddin Razi-Ardakani and Amir Nohekhan

DOI : 10.3844/ajassp.2017.204.216

American Journal of Applied Sciences

Volume 14, Issue 2

Pages 204-216

Abstract

This research aims to study application of support vector machine algorithm, artificial neural networks and five different types of decision trees in predicting mode choice of freight transportation. Performance of these models has been compared with log it model which is one the most prevalent statistical models in the field. Effect of factors such as cargo weight, distance, type and characteristics of commodity has been studied in process of modelling mode choice which is rail and road. In this regard, data gathered in the United States, is used and similarities and advantages of the models are described in details. Results indicated that cost-sensitive support vector machine is the best method in predicting shipment mode choice. After this method, stand C5 decision tree and artificial neural network. The most important variables in determining shipment mode choice of firms are respectively weight, great-circle distance between origin and destination, commodity type, compound impedance factor of rail and truck and containerized condition of the shipment to be moved.

Copyright

© 2017 Amir Samimi, Hesamoddin Razi-Ardakani and Amir Nohekhan. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.