Comparative Study on Energy Efficient in Traveling Wave Pulse Coupled Oscillator for Wireless Sensor Networks | Science Publications

American Journal of Applied Sciences

Comparative Study on Energy Efficient in Traveling Wave Pulse Coupled Oscillator for Wireless Sensor Networks

Zeyad Ghaleb Al-Mekhlafi, Zurina Mohd Hanapi, Mohamed Othman and Zuriati Ahmad Zukarnain

DOI : 10.3844/ajassp.2016.1235.1244

American Journal of Applied Sciences

Volume 13, Issue 11

Pages 1235-1244

Abstract

WSNs are unable to afford simultaneous transmission and reception of data and for most scenarios, the battery replacement is impossible upon the exhaustion of a node's battery energy. Thus, energy efficient protocols constitute vital design requirements for the WSN as a whole in order to increase the lifetime and ensure successful transmission of data from sensor node source to target, it becomes necessary to maintain sensor node's availability. Traveling Wave Pulse Coupled Oscillator (TWPCO) has proven to be robust, efficient and resistant to counteract deafness under various WSN including analytical models. However the extent to which energy efficient is consumed in sensor nodes, which deploys TWPCO as its self-organization has never been mentioned. To overcome this limitation, we performed a comparative study on energy efficient in TWPCO for WSNs. Using self-organizing scheme energy efficient WSNs by adopting a traveling wave biologically inspired network systems based on phase locking of Pulse Coupled Oscillator (PCO) model regards sensor nodes as observed in the flashing synchronization behaviors of fireflies and secretion of radio signals as firing. The simulation work was done using Java programming language. Energy efficiency in the random variant of both schemes (TWPCO and PCO) was also observed to be higher than the priority variant of the schemes.

Copyright

© 2016 Zeyad Ghaleb Al-Mekhlafi, Zurina Mohd Hanapi, Mohamed Othman and Zuriati Ahmad Zukarnain. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.