American Journal of Applied Sciences

The Mathematical Model of Power System with Thyristor Controlled Series Capacitor in Long Transmission Line

Prechanon Kumkratug

DOI : 10.3844/ajassp.2012.654.658

American Journal of Applied Sciences

Volume 9, Issue 5

Pages 654-658

Abstract

Problem statement: It is becoming increasingly important to fully utilize the existing transmission system assets due to environmental legislation, rights-of-way issues and costs of construction and deregulation policies that introduced in recent years. The Thyristor Controlled Series Capacitor (TCSC) has been proposed for the better control power flow and dynamic performance. The exact long transmission line model consists of the resistance and reactance. Most of previous researches studies transient stability performance of the TCSC in SMIB System with neglecting the resistance of the line. Thus the fully capability of the TCSC on transient stability improvement of power system may not be applied. The consideration of the resistance causes in the difficulty of deriving the mathematical model. Approach: This study investigates the effect of the TCSC on transient stability of the power system with consideration the exact long transmission line mode. The concept of two-port network is applied to simplify the mathematical model of the power system. The proposed method is tested on sample system and compared on various cases. Results: The first swing of rotor angle curve of the faulted system without resistance is obviously higher than that of with resistance whereas the second swing of the faulted system without resistance is slightly less than that of with resistance. The system with a TCSC can improve transient stability of power system. Conclusion: It was found from this study that the TCSC and resistance of the line can improve first swing of rotor angle. However, the resistance of the line provides the negative effect on second swing of rotor angle. The simulation results indicate that for practical long line, the resistance is very import parameters for evaluating transient stability of power system.

Copyright

© 2012 Prechanon Kumkratug. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.