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ABSTRACT 

The law of selfvariations determines quantitatively a slight increase of the rest masses and the electric 
charges of material particles as a common cause of quantum and cosmological phenomena. At cosmological 
scales the law of selfvariations can be expressed by two similar differential equations for the rest mass and 
the electric charge respectively. These equations contain information and justify the totality of the 
cosmological data. Solving these equations, we introduce two parameters k, A for the rest mass and another 
two k1, B, for the electric charge. Knowledge of the numerical values of these four parameters suffices for 
the accurate determination of the predictions of the law of selfvariations at cosmological scales. In the 
present article we determine the intervals in which these fundamental parameters obtain their values. As an 
aside, the conclusion emerges that the age of the Universe is far larger than the one predicted by the 
Standard Cosmological Model. A very long time of evolution is predicted until the Universe takes the form 
in which we observe it today. 
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1. INTRODUCTION 

The Law of Selfvariations predicts at cosmological 
scales (Manousos, 2013a) that the rest mass m0(r) of a 
material particle at distance r from Earth, i.e., before a 

time interval 
r

t
c

∆ =  from “now”, is given by: 

 

( ) ( )

( )
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0
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−=
− − ∆

 (1) 

 
where, m0 is the laboratory value of the rest mass of the 
same material particle. According to Equation 1 the 
relation between the rest masses m0(r) and m0 is 
determined by the values of the parameters k and A, 
while c is the velocity of light in vacuum. 

Similarly, for the electric charge q(r) of a material 
particle, the following equation holds: 
 

( ) ( ) ( )1 1

1 B 1 B
q r q t q q

k r 1 Bexp k t1 Bexp
c

− −= ∆ = =
− − ∆ − − 

 

 (2) 

 
where, q is the laboratory value of the electric charge of 
the material particle. According to Equation 2 the 
relation between the electric charges q(r) and q is 
determined by the parameters k1 and B. 

Between the parameters k and A the following 
relation holds: 
 

kA
H

1 A
=

−
 (3) 

 
where, H is Hubble’s parameter. Furthermore, for 
parameter A it holds that Equation 4: 
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z
A 1

1 z
< <

+
 (4) 

 
For every value of the redshift z. Between the 

parameters k1 and B it holds that: 
 

1k B
 W
1 B

=
−

 (5) 

 
The value of parameter W is calculated (De Laeter et al., 

1980; King et al., 2011; Manousos, 2013c; Meshik et al., 
2004; Petrov et al., 2006; Webb et al., 1999; 2001; 2011) 
to be Equation 6: 
 

4 km
W 1.2 10

sMpc
−= ×  (6) 

 
This value of parameter W results from the 

measurements of the variation of the fine structure constant 
α (references). Equation 3 and 5, as well as relation (4), 
result theoretically (Manousos, 2013b; 2013c). 

2. REGARDING PARAMETERS K AND A 

Relation (4), which is derived theoretically, confines 
in a relatively small interval the values of parameter A. 
Thus, we were able to deduce a plethora of conclusions 
about the justification of the cosmological data 
(Manousos, 2013a). Knowing the potential values of 
parameter A and Hubble’s parameter H, we can calculate 
the value of parameter k from Equation 3. 

Based on relation (4) we can assume that: 
 
A 1−→  (7) 
 

Condition (7) is compatible with all of the 
equations of the cosmological model of the 
selfvariations. The redshift z of distant astronomical 
objects is given by equation: 
 

kr
1 exp

c
z 1

1 A

 − − 
 = −

−
 (8) 

 
where, r is the distance of the astronomical object. For 
A→1−, Equation 8 gives (Manousos, 2013a) Hubble’s law: 
 

H
z r

c
=  (9) 

Practically, for A>0.999 Equation 8 and 9 coincide. 
The luminosity distance R of distant astronomical 

objects is given as a function of the redshift z 
(Manousos, 2013a) by equation: 
 

( ) ( )
cA A

R 1 z ln
H 1 A A 1 A z

 
= +   − − − 

 (10)  

 
For A→1− Equation 10 becomes: 

 
c

R z 1 z
H

= +  (11) 

 
Practically, for A>0.999 Equation 10 and 11 coincide. 
Equation 11 is confirmed by the measured 

luminosity distances of supernovae (Riess et al., 1998; 
Perlmutter et al., 1999) up to z = 1.5. For larger 
values of the redshift z, the luminosity of supernovae 
is affected by additional factors (Manousos, 2013a); 
therefore the measured values can potentially deviate 
from the prediction of Equation 11. 

All equations of the Model of Selfvariations are 
compatible with the condition r→∞. They allow us to go 
as far as we want in the past. We can calculate the value 
of any parameter, such as the rest mass and electric 
charge of material particles, the ionization energies of 
atoms, the binding energies of nucleons, the degree of 
atomic ionization and the opacity coefficient of the 
Universe, at any instant in time before «now». Beyond 
the observable part of the Universe, an enormous 
Universe that evolved during an enormous time interval 
is predicted and not the Big Bang (Manousos, 2013a). 

One of the predictions of the equations is that the 
very early Universe asymptotically tends to the vacuum. 
From Equation 1, for r→∞, we get: 
 

( ) ( )0 0m m 1 A∞ = −  (12) 

 
Equation 12 combined with condition A→1− gives: 

 
( ) ( )0 0m m 1 A 0∞ = − →  (13) 

 
The physical content of condition (7) is that it 

predicts that the Universe comes from the vacuum. 
One way to take into consideration relations (4) and 

(7) is to express parameter A in the form: 
 

nA 1 10−= −  (14) 
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where, n ,n 0∈ >� . For large values of n∈� we obtain 
condition (7). 

By combining Equation 1 and 3 we get: 
 

( ) ( )0 0

1 A
m t m

H 1 A
1 Aexp t

A
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− − ∆ 
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It is easily proven that: 
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1 H tH 1 A
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So Equation 15 is written: 

 

( )0 0

1
m t m

1 H t
∆ =

+ ∆
 (16) 

 
From Equation 16 we get: 

 

( )
0

0
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m t
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 (17) 

 
From Equation 17 we can calculate the time interval 

∆t before the present time, for every value of the ratio 
( )0

0

m t

m

∆
. For 

( )0 5

0

m t
10

m
−∆

=  Equation 17 gives: 

 
510

t
H

∆ =  (18) 

 

The time interval ∆t is much larger than the age 
1

H
 

predicted by the Standard Cosmological Model for the 

Universe. The time interval 
1

H
 refers to the recent time 

interval, in which the Universe has attained the state in 
which we observe it today and not to the age of the 
Universe. There has been an enormous amount of time 
during which the Universe, starting from a state barely 
different from the vacuum, has evolved because of the 
selfvariations into the form in which we observe it today. 

By considering relation (13) we can give as small a 

value as we want to the ratio 
( )0

0

m t

m

∆
. Then, through 

Equation 17, the time interval ∆t can obtain any large value. 

From Equation 1 we obtain: 
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Combining Equation 19 and 3 we get: 
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m tH 1 A
1 1 A

m

 
 
 ∆ =
 ∆− − − 
 

 (20) 

 

For every value of the ratio 
( )0

0

m t

m

∆
 and for every 

value of parameter A, that is, for every value of n∈�  in 
Equation 14, we calculate ∆t from Equation 20. For large 
values of n∈�  Equation 17 and 20 coincide. 

3. REGARDING PARAMETERS 
K1 AND B 

Parameter B obeys the inequality (Manousos, 2013a; 
2013b; 2013c): 
 
0 B 1< <  (21) 
 

Therefore, we can write B as: 
 

vB 1 10−= −  (22) 
 

Here, v ,v 0∈ >� . 
At a distant astronomical object located at distance r, 

the fusion temperature T(r) of hydrogen compared with 
the corresponding laboratory temperature T~2×108K, is 
given (Manousos, 2013c) by equation: 
 

( )

2

1

1 B
T r T

k r
1 Bexp

c

 
 −
 =

  − −  
  

 (23) 

 
At the same time, the binding energy ∆m0(r)c

2 of the 
nucleons at the distant astronomical object is smaller 
than the corresponding laboratory value ∆m0c

2 
(Manousos, 2013b), according to equation: 
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0
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 (24) 

 
Therefore, at the very distant past, in the very early 

Universe, nucleosynthesis and hydrogen fusion can take 
place at very low temperatures, close to 0K. Indeed, for 
r→∞ Equation 24 gives: 
 

( ) 2
0

2
0

m r c
1 A 0

m c

∆
→ − →

∆
 (25) 

 
From this starting point, we can estimate a lower 

value for parameter B. In the very early Universe, for 
r→∞, Equation 23 gives: 
 

( ) ( )2
1Τ ∞ = Τ − Β  (26) 

 
If the fusion of hydrogen took place before the 

creation of the Cosmic Microwave Background 
Radiation (CMBR), we see that: 
 

( ) 2.726KΤ ∞ <  

 
From Equation 26 we obtain: 

 

( )2
1 2.726KΤ − Β <  

 
And for T~2×108 K we get: 

 

( )282 10 1 2.728× − Β <  

 
That is: 

 
41 1.16 10−− Β < ×  (27) 

 
From relation (27) we get: 

 
41 1.16 10−Β > − ×  (28) 

 
After combining relations (27) and (22) we obtain: 

 
410 1.16 10− −< ×v  

 
And finally: 

 
v 3.93>  (29) 

Furthermore, by combining relations (21) and (28) 
we get: 
 

41 1.16 10 1−− × < Β <  (30) 
 

Relation (30) is a good estimation of the values taken 
by parameter B. We get the same estimation from 
inequality (29) through Equation 22. 

From Equation 23 we get: 
 

( ) ( )
1

r 1 B
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From Equation 31 we obtain the time interval 
r

t
c

∆ =  

before «now», when the temperature of the Universe had 
a specific value T(r) = T (∆t): 
 

( ) ( )
1

1 B
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T t
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 
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Combining Equations 32 and 5 we see that: 

 

( ) ( ) ( )

B B
t ln

W 1 B T
1 1 B

T t

 
 
 ∆ =  −
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 ∆ 
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It is easy to see that, for v>5 in Equation 22, the time 

interval given by Equation 33 does not depend on v and 
is given by equation: 
 

( )
1 T

t 1
W T t

 
∆ = − 

 ∆ 
 (34) 

 
Given that T~2×108 K and that we know the value of 

parameter W: 
  

4 24 1km
W 1.2 10 4 10 s

sMpc
− − −× ×� �  (35) 

 
We can calculate the time interval ∆t for every value 

of the temperature T(∆t)<2.726K. For example, if T(∆t) 
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= 2K, from Equation 34 we get ( )41
t 10 1

W
−∆ = −  and 

with Equation 35 we have that ∆t = 2.5×1027 s = 8×1019 
year. For T(∆t)<2K the time interval ∆t resulting from 
Equation 34 is even larger. 

4. COMPARISON OF 
PARAMETERS A AND B 

If we know the values of parameters A and B, we can 
calculate the values of parameters k and k1 from 
Equation 3 and 5 respectively. Thus, we focus our study 
on parameters A and B. 

The analysis of the equations of the cosmological 
model of the selfvariations leads to the conclusion that: 
 
B A<  (36) 
 

According to Equation 12 the rest mass of the 
material particles in the very early Universe tends to 
zero, as A→1−. This conclusion is absolutely normal 
within the framework of the theory of selfvariations. But 
we cannot make the same claim for the electric charge. 

From Equation 2 and for the very early Universe, 
theoretically for r→∞, we get: 
 

( ) ( )q q 1 B∞ = −  (37) 

 
In contrast to the rest mass, the electric charge exists in 

the Universe as pairs of opposite physical quantities. 
Therefore, we cannot claim that q(∞)→0, which is 
equivalent to the condition B→1−. The initial value q(1-
B)<q of the electric charge can have any value smaller than 
the laboratory value q. Therefore, comparing Equation 12 

and 37 we obtain 
( ) ( )0

0

m r q r
1 A 1 B

m q
− = < = −  and, 

therefore, B<A. We arrive at the same conclusion by 
different calculations. In this paragraph we will perform one 
such calculation based on the Thomson και Klein-Nishina 
scattering coefficients in the very early Universe. 

Before a time interval 
r

t
c

∆ =  from «now», for the 

Thomson and Klein-Nishina scattering coefficients it 
holds that: 
 

( ) ( )

22

1

kr
1 Aexp

r t 1 Bc
k r1 A 1 Bexp
c

   − −    σ σ ∆ −   = =
 σ σ −   − −   

    

 (38) 

where, σ is the laboratory value. The selfvariation of the 
electric charge evolves at a much slower rate (~10−6) 
than the selfvariation of the rest mass. Thus, considering 
that the value of the electric charge remains practically 
constant for a large enough distance r, we can neglect, at 
a first approximation, the consequences of the 
selfvariation of the electric charge (Manousos, 2013a) 
writing Equation 38 in the form: 
 

( ) ( )
2

kr
1 Aexp

r t c
1 A

  − −  σ σ ∆   = =
σ σ − 

 
 

 (39) 

 
In the very distant past, for large values of r, 

theoretically for r→∞, we obtain from Equation 39: 
  

( )
( )2

1

1 A

σ ∞
=

σ −
 (40) 

 
From Equation 39 for A→1− we see that the 

Thomson και Klein-Nishina scattering coefficients σ(∞) 
obtained enormous values in the very distant past, 
rendering the very early Universe opaque.  

Taking also into account the selfvariation of the electric 
charge, we obtain from Equation 38 for r→∞, equation: 
 

( ) ( )
( )

22
1 B

1 A

 σ ∞ −
=  

σ −  

 (41) 

 
According to Equation 41 the opacity of the very 

early Universe depends both upon the value of 
parameter A, as well as on the value of parameter B. 
By demanding that: 
 

( ) ( )
( )

22
1 B

1
1 A

 σ ∞ −
= >> 

σ −  

 (42) 

 
We correlate parameters A and B. 
From relation (42) we get (1-B)2>1-A and with 

Equation 14 and 22 we get 2v n10 10− −>  and finally: 
 

n
v

2
<  (43) 

 
For example we can set n = 14, v = 5 and from 

Equation 41 we get 
( ) 810

σ ∞
=

σ
. For different values of n 
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and v this ratio can obtain extremely large values, 
rendering the very early Universe opaque. 

We can perform accurate calculations regarding the 
Thomson and Klein-Nishina scattering coefficients based 
on Equation 38. However, it is not certain that the 
sensitivity of the observational instruments at our 
disposal suffices to confirm the prediction of such 
detailed calculations. At any case, Equation 38 gives the 
values of the scattering coefficients at a time interval 

r
t

c
∆ =  before «now». 

5. RESULTS 

The fundamental parameters A and B are given by 
equations A = 1-10−n and B = 1-10−v, respectively. 
Knowledge of the real numbers n and v determines the 
values of parameters A and B. Then, through relations 

kA
H

1 A
=

−
 and 1k B

 W
1 B

=
−

 we calculate parameters k and 

k1. The calculation of parameters k, A, k1, B suffices for 
the accurate determination of the predictions of the 
cosmological model of the selfvariations.  

As a side consequence of our calculations, it emerges 
that the age of the Universe is far larger than the one 
predicted by the Standard Cosmological Model. The time 

interval 
1

H
 corresponds to the very recent past, when the 

Universe had the form we observe today. This was 
preceded by a much longer time interval, during 
which the Universe evolved, because of the 
selfvariations, from an initial state only slightly 
different from the vacuum, into the state in which we 
observe it today. Beyond the limits of the observable 
Universe, the law of selfvariations predicts an entirely 
different state than the Big Bang. 

6. DISCUSSION 

At the end of the last century, Physics possessed a 
large amount of knowledge, both at the theoretical as 
well as the experimental level. We made the estimation 
that this knowledge would suffice to attempt to 
determine a common cause, if it existed, which could 
justify it. A cause for experimental and observational 
data, as well as theoretical results, which at first glance 
seemed unrelated. At the same time, we expected this 
cause to simplify the way we comprehend physical 
reality. Following this reasoning we arrived at the law of 
selfvariations. Of course, a large theoretical analysis had 

to be done, since the consequences of the selfvariations 
permeate the whole corpus of the science of Physics. 
This was expected, since we were seeking a common 
cause for the enormous amount of data we possessed.  

From the very beginning, it was obvious that the first 
branch of Physics where we could test the validity and 
the consequences of the law of selfvariations was 
Cosmology. The reason is simple: With observations 
made at cosmological scales, the consequences of the 
selfvariations are directly recorded by the observational 
instruments. Today we know that the law of 
selfvariations justifies the totality of the cosmological 
data. Furthermore, we know that the measurement of 
only two numbers, n and v, is enough for the exact 
determination of the predictions of the law. But in order 
to reach this point, we had to have the measurement of 
Hubble’s parameter H and of parameter W by J.K. Webb 
and all the researchers who worked for this purpose for 
more than twenty years. It is telling that, although we 
knew the whole theoretical framework regarding the 
selfvariation of the electric charge, we could not predict 
its consequences because we did not know the value, or 
even the order of magnitude of parameter W. After its 
measurement, it emerged that the law of selfvariations 
includes as information and justifies a set of 
cosmological data recorded by modern observational 
instruments, which cannot be justified by the Standard 
Cosmological Model. The same weakness is shared by all 
cosmological models that have at their core the expansion 
of the Universe as the cause of cosmological data. We are 
referring to the temperature difference between the 
Northern and Southern hemispheres of the Universe, the 
fluctuation of the fine structure constant, the fluctuation of 
the CMBR temperature, the absence of antimatter from 
the Universe and other detailed measurements we are 
now in a position to perform. The selfvariation of the 
electric charge evolves at an extremely slow rate, as 

results from the relation 6W
1.8 10

H
−= ×  between 

parameters H and W. The greater sensitivity of modern 
observational instruments and the persistent efforts of the 
researchers resulted in the eventual measurement and 
recording of the consequences from the selfvariation of 
the electric charge. 

At cosmological scales, the law of selfvariations 
gives two similar differential equations for the rest mass 
and the electric charge, respectively. The solution of the 
two differential equations leads to specific conclusions 
that cannot be altered or modified a posteriori. In other 
words, we cannot follow the tactic of the standard 



Emmanuil Manousos / Physics International 5 (1): 8-14, 2014 

 
14 Science Publications

 
PI 

cosmological model to introduce further assumptions as 
the set of cosmological data expands. The hypotheses of 
inflation and dark energy are just two, perhaps the most 
characteristic, introduced by the standard cosmological 
model. Until we arrived at the measurement of the 
consequences of the selfvariation of the electric charge 
(the ones we mentioned in the previous paragraph), when 
there is no longer a hypothesis that could be made by the 
Standard Model to justify them. 

In the solution of the differential equations of the law 
of selfvariations, only the integration constants are 
introduced. Thus, we are led to the fundamental 
parameters A and B, whose measurement suffices for the 
accurate determination of the predictions of the 
cosmological model of selfvariations. In this article we 
presented the study of the numerical values obtained by 
parameters A and B.  

7. CONCLUSION 

There exist specific values of the fundamental 
parameters of the cosmological model of selfvariations, 
which justify the totality of the cosmological data. The 
consequences of a physical law are directly recorded in 
the cosmological data, despite their great variety. The 
selfvariations affect the totality of our knowledge in 
Physics and their consequences are directly observable at 
cosmological distances. Therein lies the reason for the 
great variety of cosmological data recorded by modern 
observational instruments. 
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