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Abstract: Problem statement: This study examines several stylized facts (hdailgdness, leverage
effect and persistence) in volatility of stock griceturns exploiting symmetric and asymmetric
GARCH family models for Saudi Arabi&pproach: This study is carried out using closing stock
market prices over 15 years covering the periodriudry 1994 to 31 March 2009. The sample period
is divided into three sub-periods according tolteal crisis in 2006Results: The results reveal that
asymmetric models with heavy tailed densities improverall estimation of the conditional variance
equation. Moreover, we find that AR (1)-GJR GARCHvdal with Student-t outperform the other
models during and before the local crisis in 2006ile AR (1)-GARCH model with GED exhibits a
better performance after the crisis. Furthermdre findings reveal the existence of leverage efiedt
percent significance levelConclusion/Recommendations: Finally, the volatility persistent in the
samples during and after crises decreases in alelmainder various distribution assumptions.
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INTRODUCTION before the event. However, after the occupatioe, th
index of the financial market started to rise agairil
Saudi Arabia is one of the countries that is1998 and reached its highest level (2,351points) in
politically stable, acts as a leading force wittlie Gulf  1992. The second shocking event was caused by the
Cooperation Council (GCC) and plays an importantAsian financial crisis during 1997-1998. This isi
role within the Organization of the Petroleum Expay  resulted in a decline to 1,313.6 point in the ingexe.
Countries (OPEC). Saudi stock market, with 11%etist Turning to 2004-2007 period, interesting events
companies, represents the largest stock marketilmase emerge. First, the index price started at 4,43tpoi
value of shares traded by sectors (1633.6 BilligmR, during year 2004 and increased sharply to 20,606 po
September 2008) in the Gulf region (Alkhathlan andin 2006, which represent highest level during #s L8
Prabakaran, 2009). In December 2005, Saudi Arabigears and only lasted for one day (25th Februaf6p0
became a member of World Trade Organizatiorbefore the index decline. This sharp increase & th
(WTO). In 2009, the World Bank’s Business conductedindex price could be due to the good news effesttsh
a survey regarding the ease of doing business avel g as the European Union approval of Saudi Arabia into
Saudi Arabia high rank scoring 16out of 181. As aWTO and the sharp increase in the oil price ($T0) i
result, International financial corporation hasemtty = 2005. Secondly, the market index lost more thaB34,
included the equity indices of Saudi Arabia in its points during a short period of time (fronf28anuary
emerging market database. 2006 to 1st May 2006), despite the continuous asee
In Saudi Arabia, stock market was established inin oil price, which reached to $90 in 2008. By &l of
1984. Here, one may note that from 1984 to 1988, th2008-2009, the stock market lost about 5,343 points
stock market was relatively stable and no bigwhere the price declined to the same level as®420
fluctuations are observed in the stock returns.irigur

1990, the financial market received its first wavie MATERIALSAND METHODS
shocks caused by Irag's occupation of Kuwait. The
market responds with a sharp decline causing tthexin This short history of Saudi Arabia stock market

to drop to 990 points corresponding to 1,188 pointslosing price index (TSAI) emphasizes the imporéanc
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of TSAIl index in the Gulf countries and the finaalci heavy-tailed densities in the maximum likelihood
investment opportunities for investors. In receeang, estimations contribute to the existing literature. this
there has been increasing concern among researcheefd, the main aim of this study is to present thustm
practitioners and regulators over evaluating modéls favored GARCH family model and distribution
financial risk in emerging markets. Autoregressivehypotheses for risk managers as well as policy nsake
and Jenkins (1994), assumes the conditional vaziahc Of the remainder of this study is as follows. Weiew
the errors (uncertainty measure)is constant ovee ti the statistical evaluation of individual volatilitpodels

(homoscedaticity). However, as displayed in Figthe using the GARCH method and discuss the distriloutio

financial market evidence rejects this assumption.SpeCiﬁC""tion for candidate volatility models. Data

Moreover, the financial market exhibit some styize ggscnptlon, empirical results and model compareen
facts such as leptokurtosis, volatility clusteriagd iscussed and concludes the study.

leverage effects which cannot be explained by ARMA - o
models. ARMA models have shown their limitation in Volatility models: As noted by Bera and Higgins
the modeling of high-frequency (weekly, daily otras ~ (1993) and Daly (2008), there have been numerous
daily) data. It is assumed that only the mean nespo applications of the GARCH family models since its
could be changing with covariates while the varéanc introduction by Bollerslev (1986). Here, it is wort
remains constant over time. Hence, it often revk&de noting that various extensions of GARCH family
be an unrealistic assumption in practice. models enter quick expansion phase. According ¢o th

During the last few decades, we have seen gty 1o capture a stylized fact of asymmetry, R@H
multitude of different suggestions for how to motted family models can be divided into symmetric and

second moment, often referred to as volatility, of : dels. Thi ford
financial returns. Indeed, it is now widely accepteat ~aSymmetric models. This common property refersiéo t

high frequency financial returns are heteroskedasti fact that volatility of returns has various effeasa
Among the models that have proven to be the mogpositive and negative shocks. In addition, thig feas
successful are the autoregressive conditionaplayed an important role in the development of pthe
heteroskedasticity ~(ARCH) family of models sophisticated extensions of GARCH family models.
introduced by Engle (1982) and Bollerslev (1986).

Despite the burgeoning interest in and evaluation
of volatility, a clear consensus on which distribat 2000
and/or volatility model specification to use hag get
been reached even for finance practitioners arkd ris 15000
professionals. The importance of the standard GARCH
model comes from its ability to capture some of the
stylized facts of volatility such as volatility dtering

which demonstrates that large changes tends to be |
followed by large changes and small changes tei to M/
followed by a small changes (Fig. 1 evidence from e

TSAI). Secondly, however, the model is unable cagptu 1994-01-01 1997-01-01 1999-12-14 2002-11-20 2005-10-29 2009-03-30
the asymmetry of positive and negative returns
(leverage effect) because of the dependence osizae

of shocks rather than the sign of the shocks, Mamien
(2007). Thus, the standard GARCH model does not
take into account the effects of negative shocks on 0051
volatility more than the positive shock's which wer ‘ H
observed by Black (1976). In addition, one of other = 0.0 ! ,
limitations of standard GARCH models is that it goe ‘
not fully capture the third styled fact, thicknessls 0,05 4 '
(excess Kurtosis), that occurs on high frequency
financial time series.

Considering the recent empirical evidence on
volatility clustering, asymmetry and heavy-tailegaién
financial return series, we are in the opinion that
employing asymmetric volatility models assuming Fig. 1: Daily price and returns of TSAI for all jpeal
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Symmetric GARCH modd: The GARCH models allow Table 1: Descriptive statistics of TSAI return
the variance not onIy to be dependent on past shoak Before crisis During crisis After crisis Wholensple

T Min -0.0675 -0.1071 -0.1033 -0.1071
also to be dependent on the most recent varianitgetif — max 0.081 0.0953 0.0909 0.0953
The GARCH model is given as follows Eq. 1: Mean 0.0004 0.0001 -0.0008  0.0002
Med 0.0004 0.0003 0.001 0.0004
" o , o St. dev 0.0081 0.0216 0.0225 0.0134
ol =wty Lo gl +y " Biol (1) Skew -0.0252 -0.8283 -0.6923  -1.0027
= = Kurt 13.516 4.2449 4.6063 13.1496
] Q20 88.352 65.786 42.394 157.98
where,w, a; andp; are non-negative constants , [0.000] [0.000] [0.002] [0.000]
20 1644.9 722.12 368.2 5402
Altho_ugh the standard GARC_ZH mode_l c:’;\n_capt_ureQ [0.000] [0.000] [0.000] [0.000]
several important phenomena in the financial time;jpgera 241231 648.47 42155 32285
series, however, it is unable to capture other tilitya [0.000] [0.000] [0.000] [0.000]
properties such as heavy tailedness and leverégmef ARCH(2) %8362]16 [(7)28(9)]7 [;868(?]5 [058&?23
For example, the model assumes that the effects @f, obs. 3180 761 449 4390

different shocks on volatility depend only on thiges Figures in square bracket denote p-values. J. Bete Jarque-Bera

regardless of its sign. As shown in Eq. 1, the rhodetest for normality, & (20) is the Ljung-Box test for squared returns

depends on summation of square of shocks. It i$ wepnd ARCH (2) is the Engle’s Lagrange Multipliert e conditional

known that volatility is higher after negative skec heteroskedasticity at lag 2. Before Crisis : Ja@419

than after positive shocks of the same magnitudel (b { life <0
t

news effects on volatility more than good news)isTh St=
0 if otherwise

has led to the use of non-linear distribution teeténto
account that type of stylized fact. Such non-linear _
models are asymmetric GARCH models (for example, ~Above formula declares that the impact ofon

EGARCH and GJR-GARCH). the conditional variance series?(). In this modek, >0

Asymmetric. EGARCH model: Nelson (1991) (bad news) and; >0 (good news) have different effects

introduces the EGARCH model to overcome the " ; .
weakness of standard GARCH in terms of the leverag@n conditional variance. If the leverage effectsexive

effect and parameter restrictions. As mentionedvapo €Xpect it to be positive and the impulserish.
this model successfully accounts for the sign afc&b.

The model is given as follows Eq. 2: Distribution assumption: Commonly, probability

distribution of asset returns often exhibit fatts than
the standard normal distribution. Volatility clusiey

In(0?) =+ 3" a e+ A e . accounts for some but not all of the fat tail effec

t =g (2) (excess kurtosis). In addition, fat tail effect calso

q ) result from the presence non-Gaussian asset return
21:181 Ino., distribution that just happen to have fat tailseTat tail

_ - _ phenomenon is known as excess kurtosis. A timeseri
Note that where.; is positive or there is ‘good that exhibit a fat tail distribution are often refd to

news’, the total effect of; is(1+A, )‘st—i . in contrast, leptokurtic distribution and in reality the returase
. . . , typically negatively skewed (Table 1). The probipil
wheng, IS negative or thgre is ‘bad news’, the total jensity functions that can capture this phenoméfein
effect ofe,; is (1-A, )[e.;|. This model shows that large tailedness and asymmetry) are Studentt and GED

shocks have greater impact on volatility than thedistribution.
standard GARCH model. If the leverage effect existSyor mg gigtribution: The Normal density function can

we expect it to be negative. be written as follows:

Asymmetric GJR-GARCH model: GJR-GARCH =" ws:
model which was proposed by Glostenal. (1993), _exp (-0.52 )
offers an alternative method to allow for asymnuetri f(et\l ) =———=——

effect of positive and negative socks on volatilitys o2

given by Eq. 3: The following log-likelihood function is

o’ :w+z:‘:1ai £, +z;)\§t_ 2+ maximized Eq. 4:

q 2 (3) 1o
Zj::lBj Ot LnormaI=Ezt:l[ln (2m +In (0'[2) +Zt2)] (4)

where St is a dummy variable: where, T is the number of observations.
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Fig. 2: From top to bottom, daily price and retuofi§ SAI for the periods of before, during and aftee crisis

Student-t distribution: When the Student-t
conditional density is considered, log-likelihood
function can be specified as follows Eq. 5:

2
t

ol (452 |-u[ 3]} -o5
%)

In(v-2)- o.szf_l{ Ino? + (1+ v) Ir( 1

stud.t —

L
(5)
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where,v is the degrees of freedom, Geew and I'(-) is
the gamma function.

Generalized error distribution: Nelson (1991)
Generalized Error Distribution (GED) recognizesttha
the kurtosis and skewness are necessary in firlancia
time series. The following log-likelihood functiois
maximized assuming GED Eg. 6:

Leeo = . IN(V/A) —0.527‘
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—(@+Vv™")IN()-In[l(L/v)]-0.5In(0?) (6) Engle (1982) ARCH LM test statistics are found to
be highly significant for the estimated models ih a
where, & <z <o, 0< V< © and: periods considered in this study. This justifie® th

legitimacy of using GARCH family models. The te$t o
normality by Jarque and Bera (1987) strongly reject
the normal distribution hypothesis. The Ljung Box Q
statistic of order 20 on both returns and squaetarms
reflects a high serial correlation. Thus, it can be
concluded that all series are non-normal and $grial
Data description: In this study, we use high-frequency correlated. In the estimations, the presence okssc
data closing price (TSAI) of Saudi Arabia stock kedr  kurtosis necessitates fatter-tailed distributionshsas
index over the period,1January 1994 to 12009 Studentt or skewed Studerit-rather than modeling
consisting of total 4390 observations. Fig. 1 digpl With the normal distribution.

the behavior of the TSAI returns over the sample

period. As shown in the Fig. 1, there is clear ewitk RESULTSAND DISCUSSION

of volatility clustering that is large or small asprice

changes tend to be followed by other large or smalEmpirical results: This section analyzes the estimation
implies that stock return volatility changes ovind.
We divide the daily price index into three sub-pds,
before crisis, which covers the period frof January

Table 2: Parameter estimation of AR (1)-GARCH model
Period Normal  Student-t GED
Mean Equation

1994 to 18 September 2004 with 3180 observations,gefore H 0.0003  0.0003  0.0003
the crisis period which is from $0September 2004 to AR (1) [0.000] [0.000]  [0.000]
13" June 2007with 761 observations and finally, after GARCH (11) ¢ %107178] [00'%81%? [8'(1)197’]3
the crisis period that covers from™8une 2007 to 31 Variance Equation ' '
March 2009 with 449 observations. The three sub- &) 0.0000  0.0000  0.0000
sample periods are shown in Fig. 2 which clearly [0.000] ~ [0.000]  [0.000]
displays the changes in volatility over time. Thighe a ?63()21762] [%%‘;%? [8'g3lf]g
signal for volatility clustering. Hence, we invegite B 0.6341 0.6556  0.6538
the volatility of returns for each sub-period. Tie¢urns [0.014] [0.025]  [0.026]
Z 43252  1.1599

are calculated as follows Eq. 7: [0.326]  [0.027]

During Mean Equation

Rt=In(p, /p.,) @) AR(1)- M 0.0019  0.0026  0.0022
GARCH (1,1) [0.000] [0.000]  [0.000]
- - ¢ 0.0846  0.0588  0.0568
Table 1 presents descriptive statistics on TS4t lo [0.038] [0.038]  [0.037]
returns for the whole sample period as well aslhee Variance Equation
sub-periods. The daily return series presentedhén t ® 0.0000 ~ 0.0000  0.0000
: o ) . [0.000] [0.000]  [0.000]
table display positive mean return in two periods a 01728 02278  0.1912
(before and during the crisis periods), but the misa [0.025] [0.054]  [0.043]
negative for the period after the crisis which dobk B 0.8182  0.7717  0.796
explained by high volatility (see Fig. 2). The mean ¢ [0.019] ‘[109(;%%] [10'2093532
close to zero for all periods under investigatidihe [0.973]  [0.084]
returns for all periods are negatively skewed amgl t After Mean Equation
distributions of log-returns tend to be in the raga é%?lg:-H L 0(50000018 %-%%112 8-88%2
side. This indicates that in general that TSAI hese (&.1) ® E).iSG:E [0_'08733 [02057]7
losses than gains; however the magnitude of these [0.057] [0.049]  [0.045]
losses varies across periods. It is observed tigheh Variance Equation
; ; i g w 0.0000  0.0000  0.0000
losses occured during per|0d§ _of crisis and aftimisc [0.000] [0.000]  [0.000]
as compared to before the crisis. The table alswsh a 0.1489 0.1272 01261
that for all periods the log-returns are leptolajntiith a [0.031]  [0.040] [0.041]
higher peak and fatter tails compared to the normal B 08494 08737  0.8691
distribution. In general, normal skewness (0.00) an ¢ [0.027] ‘[106(;%2] [10f5388?]’
normal kurtosis (3.00) are rejected at the 5 pdrcen [0347]  [0.112]
significance level. Figures in the square brackets are p-values
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Table 3: Model diagnostics of AR (1)-GARCH model Table 4: Parameter estimation of AR (1)-EGARCH niode

Period Normal Student-t GED Period Normal Student-t GED
Before Q (10) 55.264 54.05 54.983 Mean Equation
AR (1) [0.000] [0.000] [0.000] Before 1) 0.0002 0.0003 0.0003
-GARCH (1,1) Q¥10) 4.128 5.6076 4.9131 AR (1) [0.000]  [0.000]  [0.000]
[0.941] [0.847] [0.897] -EGARCH (1,1) ¢ 0.1851  0.19 0.1818
LM (10)  4.2182 5.974 5.1564 Variance Equation O [0-0181 - [0.017]
0.937] [0817]  [0.880] ® q 17275 -1.4657 -1.4613
) . . .
LM2(10)  0.1847 0.225 0.2071 [0.086] [0.156] [0.151]
[1.000] [1.000] [1.000] a 0.0002 05231 0.4935
AlC -23083.3 -23523.7 -23469.1 [0.000] [0.039] [0.036]
BIC -23052.9 -23487.3  -23432.7 B 0.8629 0.8916  0.8909
Log-L 11546.6 11767.8 11740.5 [0.007] [0.014] [0.013]
During Q (10) 15.3075 15.0216 15.7213 A -0.076  -0.0657 -0.0503
AR (1) [0.121] [0.1313] [0.1079] [0.021]  [0.040] [0.039]
-GARCH (1,1) Q*(10) 8.615 9.5392 9.1891 g 4.2243  1.1437
[0.569] [0.482] [0.5143] During Mean Equation o314 10.028]
LM (10) 8.687 9.6467 9.2823
(10) [0.562] (0.472] [0.505] AR (1) 0.0013  0.0022 0.0018
LM2(10)  1.9192 24693 21767 -EGARCH (1,1) [0.000] [0.000] [0.000]
- : : 0.0996  0.0744 0.0626
[0.997] [0.991] ~ [0.995] [0.042] [0.038] [0.037]
AlC -4009.51 -4058.94  -4053.38 Variance Equation
BIC -3986.43 -4031.13 -4025.57 ) -0.6072 -0.7282 -0.6664
Log-L 2009.87 2035.47 2032.69 [0.062] [0.143] [0.121]
After Q (10) 0.541 16.694 3.8493 a 0.2825 0.321  0.2962
AR (1) [0.763] [0.081] [0.146] [0.041] [0.066] [0.062]
-GARCH (1,1) Q%10) 3.83 5.214 4.7121 B 0.9514  0.9408 0.9461
[0.147] [0.074] [0.095] [0.006] [0.016] [0.013]
LM (10)  3.7604 5.1492 4.6537 A -0.3805  -0.4347  -0.3963
LM2(10) 2.2806 4.6428 4.3199 g [51'208183? [%)%%2?
[0.319] [0.098] [0.115] After Mean Equation . '
AIC -2337.25 -2357.68  -2364.87  Ap() 00001 0.0007 0.0008
BIC -2316.71 -2333.04 234023 _EGARCH (1,1) [0.001] [0.001] [0.001]
Log-L 1173.62 1184.84 1188.43 0.1387 0.0953 0.0664
Figures in the square brackets are p-values ) _[0.053]  [0.052] [0.047]
Variance Equation
For each volatility model, we specify the mean digua ® [8:;311'%5 [é)_ffgl]s [0(_)'157€?S
model as follows: a 0.3042 0.2961 0.2925
[0.046] [0.073] [0.077]
p B 0.9616 0.965  0.9621
Rt=p+> @R, +g [0.012] [0.015] [0.018]
A -0.354  -0.2573 -0.2972
o [0.123] [0.159] [0.181]
where Rrepresents TSAI market return seripss the ¢ 5.4722 1.2124
conditional mean of the seriesjis the error component [0.755] [0.117]

and assumed to follow one of following densities,Figures in the square brackets prealues
normal, Student-or GED. The K in the mean equation
is determined by optimizing the Akaike Information
Criterion (AIC). According to AIC we found AR (1)

" . : significant, furthermore withA negative sign in
model has a.better .ab".'ty to fit t_he T.SAI re‘“"?"‘*s- EGARCH model and non-zero in GJR-GARCH, as
A quasi maximum likelihood estimation technique has

expected that negative (bad news) shocks imply a

been used to estimate the volatility models withyigher next period conditional variance than pusiti

aforementioned three underlying error distributions gpqks of the same sign, indicating that the exéstef
Table 2, 4 and 6 presents the joint estimationlte®li  |eyerage effect is observed in returns of the TSAI
AR (1) and the GARCH, EGARCH and GJR-GARCH mayiet index. Table 3, 5 and 7 shows that all madel

second moments, respectively. The use of GARCHgymmetric and asymmetric seem to fit well descgbin
EGARCH and GJR-GARCH models seem to bethe dynamics of the first two moments of the sedss

justified. All B coefficients are significant at shown by the Ljung-Box statistics for the squared

The leverage effect terth in the asymmetric models
EGARCH and GJR-GARCH are statistically

conventional levels. Moreover, the tail coefficiebtire
significant justifying the use of non-normal deiest

standardized residuals at lag 10 which are all non-
significant at 5% level.
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Table 6: Parameter estimation of AR (1)-GJR-GARCétiei

Period Normal Student-t GED
Before Q (10) 50.353 51.495 53.546
AR (1) [0.000] [0.000] [0.000]
-EGARCH (1,1) Q?(10) 9.5326 5.5786 5.5246
[0.482] [0.849] [0.853]
LM (10) 9.4642 5.5593 5.4724
[0.488] [0.581] [0.857]
LM?(10) 0.8017 0.3948 0.3954
[0.999] [1.000] [1.000]
AIC -23041.6 -23505.4 -23447.7
BIC -23005.2 -23462.9 -23405.3
Log-L 11526.8 11759.7 11730.8
During Q (10) 15.896 13.928 15.641
AR (1) [0.103] [0.176] [0.110]
-EGARCH (1,1) Q?(10) 7.9895 7.5062 8.1469
[0.629] [0.677] [0.614]
LM (10) 7.94 7.5079 8.1181
[0.635] [0.677] [0.617]
LM?(10) 1.5936 1.249 1.5035
[0.998] [0.999] [0.999]
AIC -4019.62 -4067.53 -4060.44
BIC -3991.81 -4035.08 -4028
Log-L 2015.81 2040.76 2037.22
After Q (10) 1.0915 2.1546 3.7363
AR (1) [0.579] [0.340] [0.154]
-EGARCH (1,1) Q?(10) 1.8803 2.7184 2.5709
[0.391] [0.257] [0.276]
LM (10) 1.8019 2.6268 2.4805
[0.406] [0.269] [0.289]
LM?(10) 0.3635 1.1822 1.0395
[0.834] [0.554] [0.595]
AIC -2339.64 -2355.33 -2362.92
BIC -2314.99 -2326.58 -2334.17
Log-L 1175.82 1184.67 1188.46

Figures in the square brackets are p-values

LM test for presence of ARCH effects at lag 10,

indicates that the conditional heteroskedasticitiste

when the test was performed on the pure retureseri
(see Table 1) are removed. However, it is worthngot
that standardized residuals in estimations usirfgree

crisis returns suffer from serial correlation. Relijag

the densities, the symmetric distributions with \hea

tails clearly outperform the conventional Gaussian
distribution in all models considered in this studs

reported in Tables 3, 5 and 7, the results of three- -
Figures in the square brackets are p-values

selection criteria reveal that the Studenttsnditional

density is found to be the most favored distributio

Period Normal Student-t GED
Mean equation
Before Y 0.0002 0.0003 0.0003
AR (1) [0.000] [0.000] [0.000]
-GJR-GARCH (1,1) ¢ 0.1803 0.184 0.1825
[0.019] [0.018] [0.018]
Variance Equation
W 0.0001 0.0001 0.0001
[0.000] [0.000] [0.0000]
o 0.2824 0.3052 0.2862
[0.017] [0.041] [0.036]
B 0.6304 0.655 0.6491
[0.023] [0.025] [0.026]
Py 0.0818 0.0675 0.0671
[0.023] [0.048] [0.043]
4 43418 1.1625
[0.327] [0.027]
During Mean Equation
AR (1) Y 0.0013 0.0022 0.0001
-GJR-GARCH (1,1) [0.000] [0.000] [0.000]
@ 0.0973 0.0716 0.0665
[0.041] [0.038] [0.037]
Variance Equation
w 0.0001 0.0001 0.0001
[0.000] [0.000] [0.000]
o] 0.0445 0.0527 0.0527
[0.029] [0.054] [0.048]
B 0.8343 0.7901 0.816
[0.017] [0.035] [0.030]
Py 0.1726  0.2292 0.1814
[0.031] [0.073] [0.054]
¢ 5.2431 1.3122
[0.019] [0.085]
After Mean Equation
AR (1) u 0.0006  0.001 0.0011
-GJR-GARCH (1,1) [0.001] [0.001] [0.001]
@ 0.1502 0.0959 0.0671
[0.056] [0.050] [0.046]
Variance Equation
W 0.0001 0.0001 0.0001
[0.000] [0.000] [0.000]
[of 0.0892 0.0895 0.0879
[0.035] [0.051] [0.054]
B 0.832 0.8629 0.8598
[0.029] [0.036] [0.041]
Py 0.1327  0.073 0.0746
[0.059] [0.063] [0.069]
4 5.0054 1.172
[0.513] [0.113

hypothesis for the standard GARCH and EGARCHHowever, when we analyze after crisis period dat,

models when before and during crisis period data igliscover that the GED appears to be the preferred

considered for estimations.

conditional density for all models estimated irs thiudy.
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Table 7: Model diagnostics of AR (1)-GJR-GARCH miode

Period Normal  Studentt GED
Before Q (10) 55.499 54.867 55.189
AR (1) [0.000] [0.000] [0.000]
-GJR-GARCH (1,1) Q?(10) 3.6524 5.3984 4.7303
[0.962] [0.863] [0.908]
LM (10)  3.6949 5.7449 4.9539
[0.960] [0.836] [0.894]
LM2(10) 0.2014 0.2472 0.2297
[1.000] [1.000] [1.000]
AlC -23086.8 -23524.2  -23469.5
BIC -23050.4 -23481.7 -23427.1
Log-L 11549.4  11769.1 11741.7
During Q (10) 14.737 12.714 14.101
AR (1)-GJR [0.142] [0.240] [0.168]
-GARCH(1,1) Q*(10) 6.1973 5.4348 6.1507
[0.798] [0.860] [0.802]
LM (10) 6.1889 5.5733 6.2217
[0.799] [0.849] [0.796]
LM2(10) 1.4882 1.1595 1.532
[0.999] [0.999] [0.998]
AlC -4021.85 -4068.84 -4061.83
BIC -3994.05 -4036.39 -4029.39
Log-L 2016.93 2041.42 2037.91
After Q (10) 0.7753 1.7852 3.3288
AR (1) [0.678] [0.409] [0.189]
-GJR-GARCH (1,1) Q?(10) 2.3169 4.1621 3.7625
[0.314] [0.125] [0.152]
LM (10) 2.2463 4.1011 3.7072
[0.325] [0.128] [0.157]
LM?2(10) 0.4914 2.0262 1.8747
[0.782] [0.363] [0.392]
AIC -2339.56 -2356.99 -2364.14
BIC -2314.92 -2328.25 -2335.39
Log-L 1175.78 1185.5 1189.07
Figures in the square brackets are p-values
Table 8: The Impact of Bad News
GED Student-t Normal Period Model
1.0503  1.0657 1.076 Before crisis AR (1)
EGARCH
1.3963 1.4347 1.3805 During crisis
1.2972 1.2573 1.354 After crisis
Table 9: Volatility Persistence
Model Period Normal  Studentt GED
AR (1) Before crisis  0.9613 0.9951 0.9696
+ GARCH During crisis  0.991 0.9995 0.9873
After crisis 0.9983 1.0000 0.9952
AR (1) Before crisis  0.8629 0.8916 0.8909
+EGARCH During crisis  0.9514 0.9408 0.9461
After crisis 0.9616 0.965 0.9621
AR (1) Before crisis  0.9537 0.9939 0.9688
+GJR-GARCH  During crisis  0.9652 0.9575 0.9595
After crisis 0.9876 0.9888 0.9851

As, is typical of volatility model estimates for

financial asset returns data, the sum of the aoeffts

on the lagged squared erron)(and the lagged

crises, this implies that shocks to the conditional
variance well be highly persistent indicating thage
changes and small changes tend to be followed I3yl sm
changes, this mean volatility clustering is obsdrire
TSAI financial returns series. The results are sbeist
with previous studies (Mohet al. (2007) and Noet al
(2009). Moreover, as presented in Table 8, the tsfiaic
bad news seem to be much higher during the crisis
compared to the rest of the periods.

CONCLUSION

Once the volatility becomes predictable, it has
great attention for both practitioners and acadiemg:
Volatility became an essential requirement for stoes
who are concerned about volatility (uncertainty)d an
risks on their investment portfolio.

In this study, firstly, we have examined the
volatility of the Saudi's stock price index (TSAI).
Secondly, we estimate the alternative GARCH-type
models (symmetric and asymmetric GARCH Models).
The comparisons were focused on two different
aspects: the difference between symmetric and
asymmetric GARCH (i.e., GARCH versus EGARCH
and GJR-GARCH) and the difference between normal
tailed symmetric, heavy-tailed symmetric distribas
(Studentt) and both heavy-tailed and asymmetric
distributions (GED) for estimating TSAI stock marke
index return volatility. We discover that all caefénts
of the volatility models were significant. The petent
measuren+3, in the periods of during and after crisis
and under different distribution assumptions have
higher persistent than before crisis. Moreover, the
estimation results reveal the existence of leverage
effects in EGARCH and GJR-GARCH models.

However, the comparison between models with
each density (normal versus non-normal) was that,
according to AIC and BIC measures used for votatili
model selection, the GJR-GARCH model with Student-
t distribution provides the best sample estimation f
both periods before and during crisis, which chgarl
outperform the symmetric models. On the other hand,
GARCH with GED performs very well the dataset we
have investigated for the period after crisis .Our
results show that, non-normal distributions provide
better in-sample estimation results than the normal
distribution.

REFERENCES

conditional variancefd) are close to unity, which is a Alkhathlan, K. and S. Prabakaran, 2009. Memory
measure of volatility persistence. Table 9, indictitat

volatility persistence were high during and aftbe t

effects on Saudi Arabian stock market-empirical
evidence. Enterprise Risk Management, 1: 1-21.

105



J. Math. & Stat., 8 (1): 98-106, 2012

Bera, A.K. and M.L. Higgins, 1993. ARCH models: Glosten, L.R., R. Jagannathan and D.E. Runkle, 1993

Properties, estimation and testing. J. Econ. Sirv., On the relation between the expected value and the
305-366. DOI: 10.1111/j.1467- volatility of the nominal excess return on stocks.
6419.1993.tb00170.x Finan., 48: 1779-1801.

Black, F., 1976. Studies of stock price volatility Jarque, C.M. and A.K. Bera, 1987. A test for noityal
changes. Proceedings of the American Statistical of observations and regression residuals. Int.. Stat
Association of the Business and Economics Rev., 55: 163-172.

Section Meetings, (BESM’ 76), USA., pp: 177- Morimune, K., 2007. Volatility models. Japanese Eco
181. Rev., 58: 1-23.

Bollerslev, T., 1986. Generalized autoregressiveMohd, N., A.H. Shaari and A. Shamiri, 2007. Modglin
conditional heteroskedasticity. J. Econ., 31: 307- and forecasting volatility of the Malaysian and the
327. DOI: 10.1016/0304-4076(86)90063-1 Singaporean stock indices using asymmetric

Box, G.E.P. and G.M. Jenkins, 1994. Time Series GARCH models and non-normal densities.
Analysis: Forecasting and Control. 3rd Edn., Malaysian J. Math. Sci., 1: 83-102.

Pearson Education India, Englewood Cliffs, ISBN-Nelson, D.B., 1991. Conditional heteroskedastidity
10: 0130607746 pp: 592. asset returns: A new approach. Econometrica, 59:

Daly, K., 2008. Financial volatility: Issues and 347-370.
measuring techniques. Phys. A: Stat. MechaNor, A.H.S.M., A. Shamiri and Z. Isa Shamiri, A.,
Appli., 387: 2377-2393. DOI: M.S.N. Abu Hassan and I. Zaidi, 2009. Comparing
10.1016/j.physa.2008.01.009 the accuracy of density forecasts from competing

Engle, R.F., 1982. Autoregressive Conditional GARCH models. Sains Malaysiana, 38: 109-118.
Heteroscedasticity with Estimates of the Variance
of United Kingdom Inflation. Econometrica, 50:

987-1008.

106



