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Abstract:  In this study, we show that Weyl’s theorem holds for algebraically class A (s, t) operator 
acting on Hilbert space. We prove: (i) Weyl’s theorem holds for f (T) for every f belongs to 
holomorphic function of spectrum of T; (ii) generalized Weyl’s theorem holds for T; (iii) the spectral 
mapping theorem holds for the Weyl spectrum of T and for the essential approximate point spectrum of T. 
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INTRODUCTION  

 
 Let H be an infinite dimensional Hilbert space and 
B (H) denote the algebra of all bounded linear operator 
acting on H. Let T be an operator whose polar 

decomposition is T= U|T|, where *T T T= . An operator 

T is said to be p-hyponormal, for ( )p 0,1∈ , if (T*T) p 

≥(TT*) p by A. Aluthge. A 1-hyponormal operator is 

hyponormal and 
1

2
- hyponormal operator is said to be 

semi-hyponormal. An invertible operator T is said to be 

log - hyponormal if *log T log T≥  (Tanahashi., 1999). 

An operator T is said to be paranormal if 22T x Tx≥  

for every unit vector x. As a generalization of a class 
A and paranormal operators they introduced class A(k) 
and absolute k-paranormal operator respectively 
(Furuta et al., 1998). An operator T belongs to class A 

(k) for k>0 if 
1

2k 2* k 1(T T T) T+ ≥  an absolute k- 

paranormal if k k 1
T Tx Tx

+≥  for every unit 

vectorx H∈ . It has been proved that every log-

hyponormal operator is class A (k), every class A(k) 
operator is absolute k-paranormal (Furuta et al.,1998). 
When k = 1 we say that T belongs to class A operator. 
 As a further generalization of class A (k), 
(Masatoshi et al., 2000) introduced the class A(s, t). An 
operator T belongs to class A (s, t), for s>0 and t>0 

if
t

t t 2t2s* * *t s( T T T ) T+ ≥ . In other words class A(s, t) 

operator is defined as
2t

2t
s tT(s, t) T+ ≥ . Many others have 

studied its properties in (Yamazaki et al., 1999; Ito and 

Yamazaki, 2002; Uchiyama, 2001) and (Uchiyama and 
Tanahashi, 2002). It is known that p-hyponormal 
operators and log - hyponormal operators are class A(s, 

t) operators and T (s, t) is 
mins, t

s t+
 - hyponormal for all 

0<s, t. If T is a class A(s, t) operator and s≤s’, t≤t’, then 
T is a class A (s’, t’). An operator T is a class A (1, 
1) operator if and only if T is a class A operator 
(Masatoshi et al., 2000; Yamazaki et al., 1999; Wang 
and Lee, 2003; Ito, 1999; Ito and Yamazaki, 2002; 
Tanahashi, 1999; Yoshino, 1997). Class AI (s, t) is 
the class of all invertible class A(s, t) operator for 
s>0 and t>0. It was pointed out in (Yanagida, 2000) 
that class A (k, 1) equals class A (k). They showed 
several properties of class A (s, t) and class AI (s, t) 
as extensions of the properties of class A (k) shown 
in (Yamazaki et al., 1999). Spectral properties of 
class A (s, t) operators where s, t∈ (0, 1) have been 
studied by several authors ((Uchiyama and 
Tanahashi, 2002, Uchiyama et al., 2004). The 
spectral properties of class A (s, t) operators where 
s>1, t>1 via their generalized Aluthge transformation 
and hyponormal transforms has been studied by Stella. 
An operator T is said to be of algebraically class A (s, 
t), if there exists a non-constant complex polynomial p 
such that p (T) is of class A (s, t) operator. 
 

Preliminaries: 
Lemma 1: (Rashid and Zguitti, 2011): Let T belongs 
to the class A (s, t) for some 0<s, t≤1, λ∈C and assume 
that σ (T) =λ. Then T =λ. 

 
Lemma 2: Let T be invertible and quasi nilpotent 
algebraically class A (s, t) operator. Then T is nilpotent. 
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Proof: Suppose that p (T) is class A (s, t) operator for 
some non-constant polynomial p. Since σ(p(T)) = 
p(σ(T)), the operator p(T)-p(0) is quasi-nilpotent, from 
Lemma 1 we have: 
 

m
1 2

n

CT (T )(T )......................

(T ) p(T) P(0) 0

− λ − λ
− λ ≡ − =

 

 
where, m≥1 since T-λi is invertible for every λI ≠ 0 and 
so Tm = 0. 
 
Lemma 3: Let T be an algebraically class A (s, t) 
operator. Then T is isoloid. 
 

Proof: Let λ∈isσ(T) and let 1

D

1
E (Z T) dz

2 i
−

λ
∂ λ

= −
π ∫  be 

the associated Riesz idempotent, where Dλ is a closed 
disc centered at λ which contains no other point of σ 

(T). We can represent T as the direct sum, 1

2

T 0
T

0 T

 
= 
 

 

where σ (T1) = λ and σ (T2) = σ (T)\λ. Since Tis 
algebraically class A (s, t) operator p (T) is a class A (s, 
t) operator for some non-constant polynomial p. Since 
σ (T1) =λ, we must have σ (p (T1)) = p (σ(T1) = p (λ). 
Therefore (p (T1)) – p (λ) is quasi-nilpotent. 
 Since p (T1) is class A (s, t) operator, it follows 
from Lemma 1, that p (T1) –p (λ) = 0. Put. Then q (T1) 
= 0 and hence T1 is algebraically class A (s, t) operator. 
Since T1-λ is quasi-nilpotent and algebraically class A 
(s, t) operator, it follows from Lemma 2, then T1-λ is 
nilpotent. Therefore λ∈π0(T) and hence λ∈π0(T). This 
proves that T is isoloid. 
 
Theorem 4 (Rashid and Zguitti, 2011): Let T belongs 
to the class A (s, t) for some 0<s, t≤1. Then T is of 
finite ascent. 
 
Corollary 5 (Rashid and Zguitti, 2011): Let T 
belongs to the class A (s, t) for some 0<s, t≤1. Then T 
has SVEP. 
 
Theorem 6: Let T be an algebraically class A (s, t) 
operator. Then T has SVEP. 
 
Proof: First we show that if T is class A (s, t) operator, 
then T has SVEP. Suppose that T is class A (s, t) 
operator. If π0(T) =ϕ, then clearly T has SVEP. 
Suppose that0(T)π ≠ϕ . Let ∆(T)=λ∈π0(T): N(T-

λ)⊆N(T*-λ). Since T is class A (s, t) operator 
and 0(T)π ≠ϕ , (T) ≠ϕ∆  Let M be the closed linear span 

of the subspaces N (T-λ) with λ∈∆ (T). Then M 

reduces T and we can write T as 1 2T T⊕ on H=M⊕M⊥. 

Clearly T1 is normal and π0(T2) =ϕ. Since T1 and T2 
have both SVEP, T has SVEP. Suppose that T is 
algebraically class A (s, t) operator. Then p (T) is class 
A (s, t) operator for some non constant polynomial p. 
Since p (T) has SVEP, it follows from [Laursen and 
Neumann., 2000, Theorem 3.3.9] that T has SVEP. 
 

RESULTS AND DISCUSSION 
 
Weyl’s theorem for algebraically class A(s,t) 
operators: Let T∈B (H), we write N (T) and R (T) for 
the null space and range of T respectively. Let α (T) = 
dim N (T) and β (T) = dim N (T*) where T* is the 
adjoint of space of T. Let σ (T), σp(T), σα(T) and π0 
(T), π00 (T) denote the spectrum, point spectrum, 
approximate point spectrum,the set of eigen values of T 
of finite multiplicity and isolated points of σ (T). An 
operator T∈B (H) is called Fredholm if it has closed 
range, finite dimensional null space and its range has 
finite co-dimensional. The index of a Fredholm 
operator T∈B (H) is given by: 
 

*ind(T) dim N(T) dimR(T) (dim N(T) dim N(T ))⊥= − = −  
 
 An operator T B(H)∈  is called Weyl if it is 

Fredholm of index zero. An operator T∈B (H) is called 
Browder if it is Fredholm of “finite ascent and decent” 
equivalently (Harte, 1988) if T is Fredholm and T-λi is 
invertible for sufficiently small λ≠0 in C. The essential 
spectrum σp(T), the Weyl spectrum w(T) and the 
Browder spectrum σb(T), of T∈B (H) are defined in 
(Harte, 1985; 1988). 
 
Theorem 7: Let T be an algebraically class A (s, t) 
operator. Then Weyl’s theorem holds for T. 
 
Proof: Suppose that λ∈σ(T)\w (T). Then T =λ is Weyl 
and not invertible, we claim that (T)λ ∈∂ σ . Assume 

that λ is an interior point of σ(T). Then there exist a 
neighborhood U ofλ, such that dim N (T-µ)>0 for all 

uµ ∈ . It follows from [Finch, 1975 Theorem 10] that T 

does not have SVEP [single valued extension property]. 
On the other hand, since p (T) is class A (s, t) operator 
for some non constantpolynomial p, it follows from 
Lemma 6, that T has SVEP. It is a contradiction, 
Therefore λ∈∂σ(T)\w (T) and it follows from the 
punctured neighborhood theorem that λ∈π00(T). 
 Conversely suppose that λ∈π00(T). Using the Riesz 

idempotent 1

D

1
E (Z T) dz

2 i
−

λ
∂ λ

= −
π ∫  for λ we can represent 
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T as the direct sum T=
1

2

T 0

0 T

 
 
 

 where σ (T) = λ and σ 

(T2) = σ (T)\λ. 
 Now we consider two cases: case (i)λ = 0.  
 Then T1 is algebraically class A (s, t) operator and 
quasi nilpotent. It follows from Lemma 2, that T1 is 
nilpotent. We claim that dim R (E) <∝. For if N (T1) is 
infinite dimensional, then 0 does not belongs to π00(T). 
It is contradiction. Therefore T1 is an operator on the 
finite dimensional space R (E). So it follows that T1 is 
Weyl. But since T2 is invertible, we can conclude that T 
is Weyl therefore0 (T) \ w(T)∈σ . 

 Case (ii) λ≠0 Then by Theorem 3, T1-λ is 
nilpotent. Since 00 1(T), Tλ∈π −λ  is an operator on the 

finite dimensional space R (E). So T1-λ is Weyl. Since 
T2-λ is invertible, T-λ is Weyl. 
 By case (i) and case (ii), Weyl’s theorem holds for 
T.This completes the proof. 

 
Theorem 8: Let T be an algebraically class A (s, t) 
operator. Then Weyl’s theorem holds for f (T) forevery 

( )f H (T)∈ σ . 

 
Proof: Let ( )f H (T)∈ σ . Since w (f (T)) ⊆ f (w (T)), it 

suffices to show that f (w (T)) ⊆ f (w (T)). Suppose 
w(f (T))λ∉ , then f (T)-λ is Weyl and Eq. 1: 

 

1 2 nf (T) C(T )(T )............(T )g(T)− λ = − α − α − α  (1) 

 
where, C, α1, α2,………., α∈C and g (T) is invertible. 
Since the operators in the rightside of (1) commute, 
every T-αi is fredholm. Since T is algebraically class A 
(s, t) operator. T has SVEP by Lemma 6. It follows 
from (Aiena and Monsalve, 2000. Theorem 2.6] that 
ind (T-αi) ≤0 for each i = 1,2,3,......n. Therefore λ∉f 
(T)) and hence f (w (T)) = (w (T)). 
 Now by (Lee and Lee, 1996), that is T is isoloid, 
then (σ(f (T))\π00(T)) = σ(f (T))\π00(T) for every f∈H 
(σ(T)). Since T is isoloid by Theorem 3 and Weyl’s 
theorem holds for T by Theorem 7 σ(f (T))\π00(T) = f 
(σ(T))\π00(T) =f (w (T)) =w (f (T)) which implies that 
Weyl’s theorem holds for f (T). This completes the proof. 
 
Theorem 9: Let T be an algebraically class A (s, t) 
operator. Then generalized Weyl’s theorem holds for (T). 

 
Proof: Assume that λ∈σ(T)\σBw (T). Then (T-λi) is B- 
Weyl and not invertible. We claim that λ∈∂σ (T). 

Assume to the contrary that λ is an interior point of σ 
(T). Then there exists a neighborhood U of λ such that 
dim (T-µ)>0 for all µ∈U. It follows from [Finch, 1975., 
Theorem 10] that T does not have SVEP. On the other 
hand since p (T) is class A (s, t) operator for non-
constant polynomial p. It follows from Lemma 6 that p 
(T) has SVEP. Hence by [Laursen and Neumann, 2000, 
Theorem 3.3.9] T has SVEP, a contradiction. Therefore 
λ∈∂σ (T).Conversely, assume that λ∈E (T), then λ is 
isolated in σ (T). From [Koliha,1996, Theorem 7.1], we 
have X = M⊕N, where M, N are closed subspaces of X, 
U = (T-λI) N is an invertible operator and 

NV (A I) |= −λ  is a quasi - nilpotent operator. Since T is 
algebraically class A (s, t) operator, V is also 
algebraically class A (s, t) operator from Lemma 8, V is 
nilpotent. Therefore T-λI is Drazin invertible [Coburn, 
1966, Proposition 19] and Lay, 1970, Corollary 2.2]. By 
[Berkani, 2002, Lemma 4.1]T-λI is a B - fredholm 
operator of index 0. 
 
Theorem 10: Assume that T or T* is algebraically class A 
(s, t). Then σea (f (T)) =f (σea (T)) for every f∈H (σ(T)). 
 
Proof: Let f∈H (σ(T)). It suffices to that 

ea eaf ( (T)) (f (T))σ ⊆ σ  for every f∈H (σ(T)). Suppose 

that λ∉T (σea (f (T))). Then f (T)-λ=C (T-α1) (T-
α2)………. (T-αn) g (T) where C, α1, α2,………,αn and 
g (t) is invertible. If T is algebraically class A (s, t) 
operator, it follows from [Aiena and Monsalve, 2000, 
Theorem 2.6] that i (T-αi) ≤0 for each i =1, 2, 3,........n. 
Therefore λ does not belongs to f (σea (T)) and hence 
(σea (T)) = f (σea (T)). 
 Suppose that T* is algebraically class A (s, t) then 
T* is SVEP. Since i (T-αi) ≤0 for each I = 1, 2, 3....n. 
(T-αi) is Weyl for each I = 1, 2, 3,.......n. Hence λ∉f 
(σea (T)) and so (σea (T)) = f (σea (T)). 
This completes the proof. 
 In this study we discuss Weyls theorem holds for 
Class A (s,t). 

 
CONCLUSION 

 
 It can be shown that that Weyl’s theorem holds for 
algebraically class A(s, t) operator acting on Hilbert 
space H. It can also be shown that Weyl’s theorem 
holds for f(T) for every ( )f H (T)∈ σ  and generalized 
Weyl’s theorem holds for (T). The spectral mapping 
theorem holds for the Weyl spectrum of T and for the 
essential approximate point spectrum of T is also 
shown. 



J. Math. & Stat., 8 (1): 150-153, 2012 
 

153 

REFERENCES 
 
Aiena, P. and O. Monsalve, 2000. Operators which do 

not have the single valued extension property. J. 
Math Anal., Appli., 250: 435-448. DOI: 
10.1006/Jmaa.2000.6966 

Berkani, M., 2002. B-Weyl spectrum and poles of the 
resolvent. J. Math Anal., Appli., 272: 596-603. 
DOI: 10.1016/S0022-247X(02)00179-8 

Coburn, L.A., 1966. Weyl's theorem for nonnormal 
operators. Michigan Math. J., 13: 285-288. DOI: 
10.1307/mmj/1031732778 

Finch, J.K., 1975. The single valued extension property 
on a banach space. Pacific J. Math., 58: 61-69.  

Furuta, T., T. Yamazaki and M. Yanagida, 1998. On a 
conjecture related to Furuta-type inequalities with 
negative powers. Nihonkai Math. J., 9: 213-218.  

Harte, R., 1985. Fredholm, weyl and browder theory. 
Proc. Royal Iris Acad., 85A: 151-176.  

Harte, R., 1988. Invertibility and Singularity for 
Bounded Linear Operators. 1st Edn., M. Dekker 
New York, ISBN: 0824777549, pp: 590. 

Ito, M. and T. Yamazaki, 2002. Relations between two 

inequalities
r pr r p p

p r p rp r p r2 2 2 2(B A B ) B and B (A B A )+ +≥ ≥  

and their applications. Integr. Equ. Oper. Theory, 
44: 442-450.  

Ito, M., 1999. Some classes of operators associated with 
generalized aluthge transformation. SUT J. Math., 
35: 149-165.  

Koliha, J.J., 1996. A generalized Drazin Inverse. 
Glasgow Math. J., 38: 367-381.  

Laursen, K.B. and M. Neumann, 2000. An Introduction 
to Local Spectral Theory. 1st Edn., Clarendon 
Press, Oxford, ISBN: 0198523815, pp: 591. 

Lay, D.C., 1970. Spectral analysis using ascent, 
descent, nullity and defect. Math. Ann., 184: 197-
214. DOI: 10.1007/BF01351564 

 
 
 
 
 
 
 
 
 
 
 
 
 

Lee, W.Y. and S.H. Lee, 1996. A spectral mapping 
theorem for the Weyl spectrum. Glasgow, Math. J. 
38: 61-64. DOI: 10.1017/S0017089500031268 

Masatoshi, F., J. Dongick, L.S. Hun, L.M. Young and 
N. Ritsuko, 2000. Some classes of operators related 
to paranormal and log-hyponormal operators. 
Math. Jap., 51: 395-402.  

Rashid, M.H.M. and H. Zguitti, 2011. Weyl type 
theorems and class A(s,t) operators. Math. Ineq 
Appli., 14: 581-594.  

Tanahashi, K., 1999. On log-hyponormal operators. 
Integ. Eq. Operator Theory, 34: 364-372. DOI: 
10.1007/BF01300584 

Uchiyama, A. and K. Tanahashi, 2002. On the riesz 
idempotent of class A operators. Math. Ineq. Appl., 
5: 291-298.  

Uchiyama, A., 2001. weyl’s theorem for class A 
operators. Math. Ineq. Appli., 4: 143-150.  

Uchiyama, A., K. Tanahashi and J.I. Lee, 2004. 
Spectrum of class A (s, t) operators. Actasci Math., 
(Szeged), 70: 279-298. 

Wang, D. and J.I. Lee, 2003. Spectral properties of 
class a operators. Trends Math. Inform. Center 
Math. Sci., 6: 93-98.  

Yamazaki, T., M. Ito and T. Furuta, 1999. A subclass of 
paranormal including class of log-hyponormal and 
several related classes. Sci. Math., 1: 41-45.  

Yanagida, T., 2000. On powers of class A( k ) operators 
including p–hyponormal and log–hyponormal 
operators. Math. Ineq. Appli., 3: 97-104.  

Yoshino, T., 1997. The p-Hyponormality of The 
Aluthge Transform. Interdisciplinary Inform. Sci., 
3: 91-93.  

 


