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Weyl's Theorem for Algebraically Class A(s, t) Opeators
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Abstract: In this study, we show that Weyl's theorem holds dlgebraically class A (s, t) operator
acting on Hilbert space. We prove: (i) Weyl's themor holds for f (T) for every f belongs to
holomorphic function of spectrum of T; (ii) gendézatl Weyl's theorem holds for T; (iii) the spectral
mapping theorem holds for the Weyl spectrum of d fanthe essential approximate point spectrum.of T
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INTRODUCTION Yamazaki, 2002; Uchiyama, 2001) and (Uchiyama and
Tanahashi, 2002). It is known that p-hyponormal

Let H be an infinite dimensional Hilbert space and
. operators and log - hyponormal operators are &éss
B (H) denote the algebra of all bounded linear afmer P g-nyp mins. t P

acting on H. Let T be an operator whose polart) operators and T (s, t) Cowalh hyponormal for all

decomposition is T= U[T], thff¢=ﬁ- Anoperator  o<g t. If T is a class A(S, t) operator ams’st<t’, then
T is said to be p-hyponormal, fpm(0,3), if (T'T) P T is aclass A (s, t'). An operator T is a clas(}
1) operator if and only if T is a class A operator
1 (Masatoshiet al., 2000; Yamazakét al., 1999; Wang
hyponormal and= - hyponormal operator is said to be and Lee, 2003; Ito, 1999; Ito and Yamazaki, 2002;
: 2 . . . . Tanahashi, 1999; Yoshino, 1997). Class Al (s, t) is
semi-hyponormal. An invertible operator T is saithe the class of all invertible class A(s, t) operafor
log - hyponormal iflog [T} = log| T'| (Tanahashi., 1999). s>0 and t>0. It was pointed out in (Yanagida, 2000)
that class A (k, 1) equals class A (k). They showed
several properties of class A (s, t) and classsAlt)
for every unit vector x. ~ As a generalization ofiass  as extensions of the properties of class A (k) show
A and paranormal operators they introduced clas$ A( in (Yamazakiet al., 1999). Spectral properties of
and absolute k-paranormal operator respectivelgjass A (s, t) operators where § (0, 1) have been
(Furutaet al., 1998). An operator T belongs to class Astudied by several authors ((Uchiyama and
. . Tanahashi, 2002, Uchiyama&t al., 2004). The
(k) for k>0 if (T spectral properties of class A (s, t) operators rehe
paranormal  if Hmk TXH >[Tx[“* for every unit S>1,t>1via their generalized Aluthge transforrmati
and hyponormal transforms has been studied byaStell
vectorxtH. It has been proved that every log- An operator T is said to be of algebraically class,
hyponormal operator is class A (k), every class)A(k t), if there exists a non-constant complex polyradrpi
operator is absolute k-paranormal (Furetal.,1998). such that p (T) is of class A (s, t) operator.
When k = 1 we say that T belongs to class A operato
As a further generalization of class A (K), preliminaries:

(Masatoshkt al., 2000) introduced the class A(s, t). An L . : e .

emma 1: (Rashid and Zguitti, 2011):Let T belongs
operator T bel?ngs to class A (s, 1), for s>0 and t to the class A (s, t) for some 0<s1fAOC and assume
s >|T ‘Zt. In other words class A(s, t) thato (T) =\. Then T .

>(TT*)P by A. Aluthge. A 1-hyponormal operator is

An operator T is said to be paranorma”TfoH > Tx|?

1
TP“T)1 2 [T> an absolute k-

if (7 [T/

2t
operator is defined &(s, t)s+> |T" . Many others have |emma 2: Let T be invertible and quasi nilpotent
studied its properties in (Yamazakial., 1999; Ito and algebraically class A (s, t) operator. Then T Ipatent.
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Proof: Suppose that p (T) is class A (s, t) operator forreduces T and we can write T &0 T,on H=MOM"

some non-constant polynomial p. Sincgp(T)) =  Clearly T, is normal andmy(T,) =¢. Since T and T
p(a(T)), the operator p(T)-p(0) is quasi-nilpotendt  have both SVEP, T has SVEP. Suppose that T is
Lemma 1 we have: algebraically class A (s, t) operator. Then p @klass
A (s, t) operator for some non constant polynorpial
CT™(T=A)(T =A%) Since p (T) has SVEP, it follows from [Laursen and
(T-A,)=p(T)-P(0)= 0 Neumann., 2000, Theorem 3.3.9] that T has SVEP.

where, nel since TA; is invertible for every\, # 0 and RESULTS AND DISCUSSION

$0 Tn = 0. Weyl's theorem for algebraically class A(s,t)
operators: Let TOB (H), we write N (T) and R (T) for
the null space and range of T respectively. d€T) =
dim N (T) andP (T) = dim N (T) where T is the
adjoint of space of T. Letr (T), oy(T), 04(T) and g
(T), Mo (T) denote the spectrum, point spectrum,
d approximate point spectrum,the set of eigen vahids
of finite multiplicity and isolated points af (T). An
T operator TIB (H) is called Fredholm if it has closed
(T). We can represent T as the direct sam[ ! ] range, finite dimensional null space and its rahgs
0T finite co-dimensional. The index of a Fredholm
whereo (T;) = A ando (Tp) = o (T)W. Since Tis  operator TIB (H) is given by:
algebraically class A (s, t) operator p (T) isassl A (s,
t) operator for some non-constant polynomial pc8&in  ind(T)=dim N(T)-dimR(T}’ = (dim N(T)- dim N(T ))
o (Ty) =A, we must have (p (To) = p ©(T) = p Q).
Therefore (p (1)) — p @) is quasi-nilpotent. An operator TOB(H) is called Weyl if it is
Since p (1) is class A (s, t) operator, it follows Eregholm of index zero. An operatoflB (H) is called
from Lemma 1, that p (y —p ) = 0. Put. Thenq G Browder if it is Fredholm of “finite ascent and et
= 0 and hence {lis algebraically class A (s, t) operator. equivalently (Harte, 1988) if T is Fredholm anc\Tis
Since T-A is quasi-nilpotent and algebraically class Ajnyertible for sufficiently smalhz0 in C. The essential
(s, t) operator, it follows from Lemma 2, ther-X is spectrum o(T), the Weyl spectrum w(T) and the
nilpotent. ThereforOmy(T) and henc\Omy(T). This  growder spectrunoy(T), of TOB (H) are defined in
proves that T is isoloid. (Harte, 1985; 1988).

Theorem 4 (Rashid and Zguitti, 2011)1et T belongs
to the class A (s, t) for some 0<slt Then T is of
finite ascent.

Lemma 3: Let T be an algebraically class A (s, t)
operator. Then T is isoloid.

Proof: Let AOiso(T) and let E;% [ (z-Ty'dz be

ODA
the associated Riesz idempotent, whegeisba close
disc centered at which contains no other point of

Theorem 7: Let T be an algebraically class A (s, t)
operator. Then Weyl's theorem holds for T.

Corollary 5 (Rashid and Zguitti, 2011): Let T  Proof: Suppose thatUo(T)\w (T). Then T 2 is Weyl
belongs to the class A (s, t) for some 0<4.fThen T and not invertible, we claim thatlgo(T). Assume
has SVEP. that A is an interior point ofo(T). Then there exist a
neighborhood U &, such that dim N (Tx)>0 for all
Theorem 6: Let T be an algebraically class A (s, t) u0u. It follows from [Finch, 1975 Theorem 10] that T
operator. Then T has SVEP. does not have SVEP [single valued extension prgpert
On the other hand, since p (T) is class A (s, Brafor

Proof: First we show that if T is class A (s, t) operator, or some non constantoolvnomial it follows from
then T has SVEP. Suppose that T is class A (s, r& PoY b

emma 6, that T has SVEP. It is a contradiction,

operator. If T(T) =6, then cIear_Iy T ha.s SVEP. Therefore \Ddo(T)w (T) and it follows from the
Suppose  thaty(T) #¢.  Let AT)=AUMG(T): N(T-  nncrured neighborhood theorem thaty(T).

AMON(T'-"A). Since T is class A (s, t) operator Conversely suppose thelflTgo(T). Using the Riesz
andm,(T) 26, A(T) #2¢ Let M be the closed linear span .
To(T) %0, AT) 0 . P idempoteng, =i, J' (z-T)"dz for A we can represent
of the subspaces N ()} with AOA (T). Then M 2mi 7,
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T as the direct T, O h T = and Assume to the contrary thatis an interior point ot
as the direct sum 0 T, whereo (T) =A andg (T). Then there exists a neighborhood Uhaduch that
(To) =0 (T dim (T-w)>0 for allpduU. It follows from [Finch, 1975.,
Now we consider two cases: casa &)0. Theorem 10] that T does not have SVEP. On the other

Then T, is algebraically class A (s, t) operator andnand since p (T) is class A (s, t) operator for-non
quasi nilpotent. It follows from Lemma 2, thag &  constant polynomial p. It follows from Lemma 6 tipat
nilpotent. We claim that dim R (E)X For if N (T)) is  (T) has SVEP. Hence by [Laursen and Neumann, 2000,
infinite dimensional, then 0 does not be|ongg‘|36(T) Theorem 339] T has SVEP, a contradiction. Theesfo
It is contradiction. Therefore ;Tis an operator on the AOdo (T).Conversely, assume th&E (T), thenA is
finite dimensional space R (E). So it follows tAatis  isolated ino (T). From [Koliha,1996, Theorem 7.1], we
Weyl. But since T is invertible, we can conclude that T have X = MIN, where M, N are closed subspaces of X,
is Weyl therefor@Uo(T)\w(T). U = (T-Al) IN is an invertible operator and

Case (ii) A20 Then by Theorem 3, A\ is V=(A-N)|y is a quasi - nilpotent operator. Since T is
nilpotent. SinceAOm,,(T), T,-A is an operator on the algebraically class A (s, t) operator, V is also

finite dimensional space R (E). Se-X is Weyl. Since algebraically class A (s, t) operator from Lemma/8s

T,-A is invertible, TA is Weyl. nilpotent. Therefore ™ is Drazin invertible [Coburn,
By case (i) and case (ii), Weyl's theorem holds fo 1966, Proposition 19] and Lay, 1970, Corollary 2By}
T.This completes the proof. [Berkani, 2002, Lemma 4.1]X+ is a B - fredholm

operator of index 0.
Theorem 8: Let T be an algebraically class A (s, t) ]
operator. Then Weyl's theorem holds for f (T) foeey ~ 1neorem 10:Assume that T or Tis algebraically class A
fOH (o(T)). (S, 1). Theroey(f (T)) =f (0e4(T)) for every f1H (o(T)).

Proof: Let fOH (o(T)). It suffices to that
Proof: Letf OH(o(T)). Since w (f (T)T f (w (T)), it (o (T)) Do Lf(T)) for every fIH (o(T)). Suppose
suffices to show that f (w (T)J f (w (T)). Suppose that AOT (Cea (f (T))). Then f (T)A=C (T-ay) (T-
AOw(f(T)) , then f (T)A is Weyl and Eq. 1: (073 I (T-ay) g (T) where Cay, Op,........., o,and
g (t) is invertible. If T is algebraically class &, t)
operator, it follows from [Aiena and Monsalve, 2000
Theorem 2.6] that i (Tr) <O for each i =1, 2, 3,........ n.
ThereforeA does not belongs to 6§, (T)) and hence
where, Cal,a2,.........., adC and g (T) is invertible.  (Ge,(T)) = f (Gea(T)).
Since the operators in the rightside of (1) commute Suppose that Tis algebraically class A (s, t) then
every T4 is fredholm. Since T is algebraically class A T" is SVEP. Since i () <0 for each | = 1, 2, 3....n.
(s, t) operator. T has SVEP by Lemma 6. It follows(T-a;) is Weyl for each | = 1, 2, 3,....... n. HenkBf
from (Aiena and Monsalve, 2000. Theorem 2.6] thatg,, (T)) and SO @ea (T)) = f (Gea (T)).
ind (T-Gi) <0 for each i = 1,2,3,...... n. Therefok&lf This Comp|etes the proof_

(T)) and hence f (w (T)) = (w (T)). In this study we discuss Weyls theorem holds for
Now by (Lee and Lee, 1996), that is T is isoloid, Class A (s,t).

then E(f (T))\moo(T)) = o(f (T))\1ue(T) for every f1H
(o(T)). Since T is isoloid by Theorem 3 and Weyl's CONCLUSION
theorem holds for T by Theorem &{f (T)\to(T) = f
(o(MN\(T) =f (w (T)) =w (f (T)) which implies that
Weyl's theorem holds for f (T). This completes fiieof.

f(T)=A=C(T=a)(T A (T-a, )g(T) 1)

It can be shown that that Weyl's theorem holds for
algebraically class A(s, t) operator acting on Hitb
) space H. It can also be shown that Weyl's theorem
Theorem 9: Let T bel an algebraically class A (s, t) hoids for f(T) for everyfOH(o(T)) and generalized
operator. Then generalized Weyl's theorem hold¢§Tor Weyl's theorem holds for (T). The spectral mapping

theorem holds for the Weyl spectrum of T and fa th
Proof: Assume thahUo(T)\ogy (T). Then (TA;) is B-  essential approximate point spectrum of T is also
Weyl and not invertible. We claim thatdoo (T).  shown.
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