Edge Double-Critical Graphs

John J. Lattanzio
Department of Mathematics, Indiana University of Pennsylvania
Indiana, Pennsylvania 15705, USA

Abstract: Problem statement: The vertex double-critical conjecture that the only vertex double-critical graph is the complete graph has remained unresolved for over forty years. The edge analogue of this conjecture has been proved. Approach: It was observed that if the chromatic number decreases by two upon the removal of a 2-matching, then the 2-matching comprises four vertices which determine an induced subgraph isomorphic to the complete graph on four vertices. This observation was generalized to t-matchings. Results: In this note, it has been shown that the only edge double-critical graph is the complete graph. Conclusion/Recommendations: An alternate proof that the only edge double-critical graph is the complete graph has been obtained. Moreover, the result has been obtained independently.

Key words: Chromatic number, critical clique, k-matching

INTRODUCTION

The graphs considered in this study are finite, undirected and simple. For a given graph G, the vertex and edge sets of G are denoted by V(G) and E(G), respectively. The order of G, denoted by n = |V(G)|, is the cardinality of V(G). An r-clique is a complete subgraph of order r and is denoted by K_r. A subset M of E(G) is said to be independent whenever no two edges in M share a common vertex. In case |M| = k, the set M is called a k-matching. For a subset X of V(G), the subgraph of G induced by X is denoted by G[X]. All vertex colorings are proper, i.e., a partition of V(G) into independent subsets of V(G) called color classes. Lastly, \(\chi(G) \) denotes the chromatic number of G and is the minimum cardinality of a partition of V(G) determined by a proper vertex coloring of G.

A graph G is said to be vertex double-critical provided \(\chi(G-v) = \chi(G)-2 \) for every adjacent pair of vertices u, v. This definition arises out of its relation to the Erdos-Lovasz Tihany Conjecture. A special case of this conjecture is that the only vertex double-critical graph is the complete graph; it is often referred to as the Erdos-Lovasz double-critical conjecture. Relations to FTTMs and the inertia tensor of a tetrahedron as defined in (Ahmad et al., 2010; Tonon, 2005), respectively are also being investigated.

Edge double-critical graphs: It is now shown that \(K_n \) is the only edge double-critical graph. First, some notational conventions and a required definition are given. Let \(M_2 = \{e_1, e_2, \ldots, e_t\} \) be a set of t edges in E(G) and set \(e_i = u_iv_i \) for i = 1, 2, \ldots, t. Next, define \(M'_2 = \{u_1, v_1\} \cup \{u_2, v_2\} \cup \cdots \cup \{u_t, v_t\} \). Clearly, \(M_t \) is a t-matching when \(|M_t| = 2t\).

Definition 1: Let G be a graph which contains 2-matchings. Then G is called edge double-critical whenever \(\chi(G-M_2) = \chi(G)-2 \) for every 2-matching \(M_2 \).

Necessarily, an edge double-critical graph is connected. An important observation is given in the following lemma.

Lemma 1: Let \(M_2 = \{e_1, e_2\} \) be a 2-matching such that \(\chi(G-M_2) = \chi(G)-2 \). Then \(G[M'_2] \cong K_4 \).

Proof: Set \(k = \chi(G) \) and let \(e_i = u_iv_i \) for i = 1, 2. Consider any (k-2)-coloring of G-\(M_2 \), the colors being from among \(\{c_1, c_2, \ldots, c_k-2\} \). Then \(u_1 \) and \(v_1 \) must be colored the same since otherwise there would exist a (k-2)-coloring of G-\(e_2 \). A similar argument shows that \(u_2 \) and \(v_2 \) must be colored the same, necessarily using a different color from that used for \(u_1 \) and \(v_1 \). Next,
observe that \(u_1, u_2 \in E(G-M_2) \). Else, both \(u_1 \) and \(u_2 \) could be recolored using color \(c_{k-1} \). But this would allow \(e_1 \) and \(e_2 \) to be added back to \(G-M_2 \) resulting in a coloring of \(G \) using fewer than \(k \) colors. A similar argument shows that \(u \) and \(v \) can be added back to \(G-M_2 \) resulting in a coloring of \(G \) using fewer than \(k \) colors. Furthermore, \(G[M_2'] \cong K_4 \).

Theorem 1: Let \(t \geq 1 \). If \(\chi(G-M_1) = \chi(G) \) then \(M_1 \) is a \(t \)-matching of \(G \). Moreover, \(G[M_1] \cong K_2t \).

Proof: Let \(k = \chi(G) \). The result is trivial for \(t = 1 \). Let \(t \geq 2 \) and consider a subset \(M_t \) of \(E(G) \) such that \(\chi(G-M_t) = k-t \). Because \(M_t = t \), it follows that \(M_t \) is a \(t \)-matching as incident edges can decrease the chromatic number of a graph by at most one upon their removal. Observe now that for all pairs \(i, j \) with \(i \neq j \), \(\chi(G-e_i-e_j) = k-2 \). By setting \(M_2 = \{ e_i, e_j \} \) and applying Lemma 1, \(G[M_2] \cong K_4 \). Hence, \(G[M_1] \cong K_2t \).

Proposition 1: Every \(t \)-matching in \(K_{2t} \) is critical.

Proof: The proof is by induction on \(t \). For \(t = 1 \), the result is trivial. Since \(\chi(K_{2t} - M) = \chi(C_4) = 2 \) for every 2-matching \(M \) of \(K_4 \), Proposition 1 holds for \(t = 2 \). Now, inductively assume that Proposition 1 holds for \(t = 1, 2, \ldots, t'-1 \). Let \(M_t \) be any \(t' \)-matching in \(K_{2t} \). Notice that \(K_{2t'} \) can be written as \(K_{2t'} = K_t + K_{2(t'-1)} \). Moreover, it can be assumed, without loss of generality, that the single edge in the \(K_2 \) term is in the \(t' \)-matching \(M_t \). Consequently, \(M_t \) can be written as \(M_t = M_{t-1} \cup M_{t-1}' \), where \(M_t = K_{2t-1} \) and \(M_{t-1}' \) is a \((t'-1) \)-matching in the \(K_{2(t'-1)} \) term. By the inductive hypothesis, \(\chi(K_{2(t'-1)} - M_{t-1}') = t'-1 \). Therefore:

\[
\chi(K_{2t'} - M_t) = (K_{2t} - K_{2(t'-1)}) - (M_{t-1} \cup M_{t-1}') = (K_2 - M_2) + (K_{2(t'-1)} - M_{t-1}') = 1 + (t'-1) = t'.
\]

Hence, \(\chi(K_{2t'} - M_t) = 1 + (t'-1) = t' \).

Corollary 1: Every matching in \(K_n \), \(n \geq 2 \), is critical.

Lemma 1 and Corollary 1 together set the stage for the main result of this note.

Theorem 2: \(G \) is edge double-critical if and only if \(G \cong K_n \) provided \(n \geq 4 \).

Proof: If \(G \cong K_n \), where \(n \geq 4 \), then by Corollary 1, every 2-matching in \(K_n \) is critical. Thus, \(G \) is edge double-critical. Conversely, let \(G \) by a connected, edge double-critical graph. Take any \(u, v \in V(G) \) and suppose to the contrary that \(uv \notin E(G) \). Then \(N(u) = N(v) = \{ w_{u,v} \} \) for some vertex \(w_{u,v} \in V(G) \). Otherwise, because \(G \) is connected, it would follow that \(u, v \in M_2' \) for some 2-matching \(M_2 \). Since \(G \) is edge double-critical, \(G[M_2'] \cong K_4 \) by Lemma 1. This implies that \(uv \in E(G) \), contrary to our supposition. Next, observe that \(N(z) = \{ w_{u,v} \} \) for every vertex \(z \neq w_{u,v} \). Else, by using exactly the same argument as above, we would be forced to conclude that \(z \in N(u) = \{ w_{u,v} \} \), which is clearly not possible by the choice of \(z \). The above argument leads to the conclusion that \(G \) is a star. But such a graph is known not to be edge double-critical because of the absence of 2-matchings in any star. Hence, \(uv \notin E(G) \) so that \(G \cong K_n \).

REFERENCES

Stiebitz, M., 1987. \(K_5 \) is the only double-critical 5-chromatic graph. Discr. Math., 64: 91-93. DOI: 10.1016/0012-365X(87)90242-1