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Abstract: Problem statement: In this study, a delete-half jackknife problem reformulated as a 
subsample multihalver was presented. Approach: In this respect, exploiting outlier nomination and 
estimation, since considering all possible half-sample is unpractical and unfeasible were considered. 
Results: We derived subsample algorithm which is unbiased multihalver and the performance of the 
model in formulating the subsample multihalver was shown. Conclusion: The result of subsample 
multihalver method of nomination and estimation is better way of resolving large population. 
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INTRODUCTION 

 
 The Robust version of the Jackknife using the 
trimmed mean of the pseudovalues and a general M-
estimator base on the pseudovalues offer moderately 
robust alternatives to Jackknife with goal asymptotic 
properties, but quite limited small sample results 
(Fernholz et al., 2004). However, if the population is 
large but uniformly contaminated with outlier, the 
effective of the leave out half Jackknife is over 
shadowed by the size. 
 The moderate discussion of trimmed and M-estimator 
has been on Jackknife (Hinkley and Wang, 1980; Cheng, 
1991). The original delete-one Jackknife use the delete-k 
resampling method (Turkey, 1979). Multihalver was used 
to detect and estimate outlier Fernholz et al., 2004). A 
robust rank-based nonparameteric spectral estimation was 
introduced for detecting periodicity in nonideal dataset 
(Pearson et al., 2003). 
 The main stream approach for connecting outliers 
had been executed with caution (Grane and Veiga, 
2009). It is an established fact that neglecting the 
existence of some outlier during the estimation phase of 
the detection methodology may entail to end up with 
biased parameter (Van Dijk et al., 1999). 
 In this present study, we attempt to oversome the 
difficulties associated with large population but 
uniformly contaminated with outlier, by reformulating 
the Jackknife robust version using trimmed and M-
estimator as a subsample goal technique and solving 
same by the usual procedure. 
 

MATERIALS AND METHODS 
 
 The tools and logic for this research are similar to 
the research of (Fernholz et al., 2004) when dealing with 
multihalver and subample multihalver. 

The subsample muiltihalver: For a sample of size n 
and, a T statistic, the subsample multihalver use the 
resample of size n/k (where k is a multiple of n) with a 
reasonable number of subsample halving which are 
splits of data in subgroup as required. The number of all 

possible subsample halving is 
n

n /k
/ 2 

 
 

~ n
n2 / 2π , 

which grow to n quickly is an improvement on 
(Fernholz et al., 2004). It is desirable to have 
intersecting subsample approach orthogonality, 
wherever possible and convenient to have them 
reasonably similarly related. For the sample size of k, 
this can be achieved by repeated Hadamard matrices. 
The case when n is a multiple of four is an instant 
(Plackett and Burman, 1946) which is obtained using 
the sequence from Plackett-Burman. Halving can be 
described in two ways, either as a pairing of 
observations leading to a split of the data in half, or as 
two complementary half sample. Hence, subsample 
multivalve can be describe as a sampling of 
observation leading to a slit of data into k delete 
subsample or a k complementary delete subsample. If 
subsampling is described as sampling by pairing and 
repairing the existing pairs. Then, it is understood that 
we select the left-sample L by taking the first element 
in each pair and the right half-sample R by taking the 
second element in each pair. Thus, the pairing: 

 

( ) ( ) ( ){ }1 2 3 4 n 1 ny , y , y , y , , y ,y−ω = L  (1) 

 
which correspond to the halving with two 
complementary half samples: 

 

{ } { }1 3 n 1 2 4 nL y , y , , y and R y , y , , y−= =L K  (2) 
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 Hence, we can further obtained halving from L and 
R in (2) by repeating the pair procedures above, 
therefore we have: 
 

{ } { }L 1 5 n 3 R 3 n n 1L L y ,y , , y and L y ,y , , y− −= = =L K  (3) 

 
 Similarly: 
 

{ } { }L 2 6 n 2 R 4 8 nR y ,y , , y andR y , y , , y−= =L K  (4) 

 
 This procedure continues until a k subsample is 
obtained recursively. This k subsample is the proposed 
subsampling goal model. Thus, we have 1 2 ks ,s , ,sK  

subsamples established: 
 
Hadamard matrices and associated sub sampling 
result: Let: 
 

1

1 1
H

1 1

+ + 
=  + − 

 (5) 

 
be a Hadamard matrix of order 2. Where H1 is an array 
of data set and +1s and -1 are subdivision of H1 i.e., the 
data set H1 has been divided into four groups. Hence, 
the matrix is with entries equal ±1 and orthogonal rows 
and columns. We can construct Hadamard matrices of 
higher order recursively by the operation: 
 

k 1 k 1
k

k 1 k 1

H H
H for  k 2

H H
− −

− −

 
= ≥ − 

 (6) 

 
 The details of Hadamard matrices for pairing and 
having had be shown (Fernholz et al., 2004) and it is 
based on the principle of pairing and halving, we 
derived the subsampling Multrihalver Method; which 
can be stated as a process of continuous fitting of 
Hadamard matrices and it is associated pairing until the 
kth order Hadamard matrices is obtained. As shown 
below. Let: 
 

 
1 1

2
1 1

H H
H

H H

  =  −  

  (7) 

 
where, H1 is as defined in (5), therefore 
 

1 1 1 1

1 1 1 1
2

1 1 1 1

1 1 1 1

H H H H

H H H H
H

H H H H

H H H H

 
 − − =
 − −
 

− −  

 (8) 

 Hence: 
 

2 2
3

2 2

H H
H

H H

 
=  − 

  (9) 

 

k 1 k 1
k

k 1 k 1

H H
H

H H
− −

− −

 
=  − 

 (10) 

 
 The resultant imagination of the abstract version of 
Hk by substituting Hk-1…, H1 gives the proposed the 
matrix of sub sampling goal model. This is also a good 
example of the kth delete subsample or k 
complementary delete subsample. 
 

RESULTS AND DISCUSSION 
 
Estimation based on the sub sampling multivalve: 
Let γ be the set of subsamples obtained by Hadamard 
matrice method described above. For each subsamples 
si∈γ we compute the difference L-R or hL-hR of the 
statistic T, where hL and hR are the values of h on the 
left and right subsamples of the halver. For each j, we 
furthermore defined a pseudovalue for the subsample 
using the extensions ideas as: 
 

 * L R
j

h h
T iT  i, j  1, ,  n 

i

+ = − = … 
 

 (11) 

        
 The subsample estimate associated to T is then: 
 

n
ss j

j x

1
T T

H ∈

= ∑   (12) 

 
 This shows that the estimate for subsample and 
multihalver are alike, expect for the fact that subsample 
reduce the analytical and computation process before 
applying multipltihalver method. Hence, it is obvious 
that the subsample estimate the standard deviation of T 
as: 
 

ss

1/2

L r
e 2

1 h h
S

H N

− = ∑ 
 

 (13) 

 
where, H is equal to total number of Subsample 
Hadamard metrics. 
 

CONCLUSION 
 
 It is obvious that outlier nomination base on 
multihalver is applied to a subsample multihalver. This 
subsample result will then act as an unbias solution to 
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the entire problem, thereby reducing the stress of 
working with the whole population. 
 The subsample goal technique has be shown to 
provide a better outlier nomination and estimation when 
the population is very large than the conventional 
Jackknife Robust version using trimmed mean of the 
pseudovalue and m-estimator based on pseudovalues. 
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