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Abstract. Problem statement: The Least Squares (LS) method has been the most popular technique 
for estimating the parameters of a model due to its optimal properties and ease of computation.  LS 
estimated regression may be seriously disturbed by multicollinearity which is a near linear dependency 
between two or more explanatory variables in the regression models. Even though LS estimates are 
unbiased in the presence of multicollinearity, they will be imprecise with inflated standard errors of the 
estimated regression coefficients. It is now evident that the multiple high leverage points which are the 
outliers in the X-direction may be the prime source of  collinearity-influential observations. 
Approach:  In this study, we had proposed robust procedures for the estimation of regression 
parameters in the presence of multiple high leverage points which cause multicollinearity problems.  
This procedure utilized mainly a one step reweighted least square where the initial weight functions 
were determined by the Diagnostic-Robust Generalized Potentials (DRGP).  Here, we had incorporated 
the DRGP with different types of robust methods to downweight the multiple high leverage points 
which lead to reducing the effects of multicollinearity. The new proposed methods were called GM-
DRGP-L1, GM-DRGP-LTS, M-DRGP, MM-DRGP, DRGP-MM. Some indicators had been defined to 
obtain the best performance robust method among the existing and new introduced methods. Results: 
The empirical study indicated that the  DRGP-MM emerge to be more efficient and more reliable than 
other methods, followed by the GM-DRGP-LTS as they were able to reduce the most effect of  
multicollinearity.  The results seemed to suggest that the DRGP-MM and the GM-DRGP-LTS offers a 
substantial improvement over other methods for correcting the problems of high leverage points 
enhancing multicollinearity.  Conclusion/Recommendations: In order to solve the multicollinearity 
problems which are mainly due to the multiple high leverage points, two proposed robust methods, 
DRGP- MM and the GM-DRGP-LTS, were recommended.   
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INTRODUCTION 
 
 Least squares estimation is one of the predominant 
regression analysis techniques due to the universal 
acceptance, elegant statistical properties and 
computational simplicity. Unfortunately, the 
mathematical elegance that makes least squares so 
popular depends on a number of fairly restrictive and 
often unrealistic assumptions. Two of the assumptions 
that make least squares so attractive in terms of general 
model hypothesis and parameter significance testing, 
are normality of error distribution and independency of 
explanatory variables. The normality assumption can be 
violated in the presence of one or more sufficiently 

outlying observations in the data set resulting in less 
reliable estimates of the model parameters[1]. The 
second condition that potentially impacts the reliability 
of least squares estimation is multicollinearity, which is 
a near-linear dependency among the explanatory 
variables (X-direction). Multicollinearity can cause 
large variability in the estimation of parameters. 
Sometimes it causes the parameters estimation to be 
different from the true values by orders of magnitude or 
incorrect sign. It may also inflate the variance of the 
estimations. High leverage points, the points far from 
the rest of the data in the X-direction, have high 
potential for influencing most of the regression results 
such as eigenstructure and condition index of X[10]. 
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Hadi[10] noted that collinearity-influential points are 
usually the points with high-leverage which tends to 
pull the model fit to their direction. Kamruzzaman and 
Imon[17] introduced these points as a new source of 
multicollinearity problems. Thus, diagnosing the 
multiple high leverage points and recognizing 
estimation methods which are resistant to these points 
may improve regression estimations [28]. Robust 
regression methods are designed to be less sensitive 
than least squares to outliers mostly in Y-direction, 
resulting in improved fits to the non-outlying 
observations. In order to achieve this stability, robust 
regression limits the influence of outliers.  Three most 
important properties of any robust regression are 
efficiency, breakdown point and bounded influence[21]. 
Several works on robust estimation have been proposed 
in the literature[2,3,12].  Among them are Huber[15] and 
Yohai[29] who introduced the M- and MM- estimators. 
However, the M-estimator is not robust in the X-
direction and has a low break down point that is equal 
to (1/n)[27].  The MM- estimator has high efficiency and 
also possesses high breakdown values.  Rousseeuw 
[23,24] introduced the Least Median of Squares (LMS) 
and Least Trimmed of Squares (LTS) in which both 
estimators have high breakdown equal to 50%. 
However, they are unbounded influence estimators 
[23,24] where the LMS and LTS have low and medium 
efficiency value, respectively[26]. Rousseuw and 
Leroy[25]  proposed Reweighted Least Squares based on 
LMS(RLS-LMS) where the LMS scale employed to 
standardized the LS residuals and a hard rejection 
function  utilized to assigned the initial weights to the 
data. Schweppe[13] introduced a class of robust methods 
which is called the Generalized M-estimators (GM-
estimators) with a major aim of downweighting those 
high leverage points which have large residuals. 
Simpson[26] has reported that these estimators have high 
efficiency and bounded influence properties which 
achieve a moderate break down point equal to 1/p. The 
GM-estimator is the solution of the normal equation: 
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Where: 
πi = Defined to downweight high leverage points with 

high residuals  
s = A robust scale estimate 
 
 Iteratively Reweighted Least Squares (IRLS) may 
be used to solve (1). At convergence, the GM-estimator 
may be written: 

1
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  (2) 

where, in this case  the diagonal elements of W are the 
weights wi  defined as: 
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 The main objective of this study is to propose some 
estimators that are able to perform well where multiple 
high leverage points are the cause of the 
multicollinearity problems in regression analysis. 
Nonetheless, the development of such estimators has 
not been published extensively in the literature. Since 
high leverage points may be collinearity-enhancing 
observations, we attempt to reduce its influence by 
employing robust estimator which is known to be 
resistant to high leverage points.  In this connection, we 
will consider the bounded influence or Generalized M-
estimators[13] with a major aim of down weighting those 
high leverage points which have large residuals. To 
enhance the GM-estimators, these estimators may be 
defined as multi-stage estimators where in different 
stages, different robust techniques are applied to 
combine the desirable properties of each technique[7,27].  
Hence in this study, we propose mainly new multi stage 
GM-estimators and weighted MM-estimators to remedy 
the problem of collinearity-enhancing observations on 
the parameter estimates of the multiple linear regression 
model. 
 

MATERIALS AND METHODS 
 
High leverage points diagnostic methods: A 
traditional measure of the outlyingness of an 
observation Xi with respect to the sample is three-Sigma 
edit rule which is defined as follows: 
 

X X
T

s

−=
⌢

                                (4)  

Where: 
X
⌢

 = The mean of explanatory variables 
s = The standard deviation of explanatory variables 
 
 The robust version of (4) is:  
 

X Med(X)
T '

Mad(X)

−=   (5) 

Where: 
Med(X) = Median(X) 
Mad(X) = The normalized median absolute deviation 

about the Median(X) (Mad = 
1.4826(medianxi-median (xi))  



                                                         J. Math. & Stat., 5 (4): 311-321, 2009 
 

313 

 When the distribution of the data is normal, T and T׳ 

are approximately equal.  Any observation which has 
absolute value of , T or T ' greater than 3, is considered as 
outlier[22]. This method can be used in univariate 
regression models as a diagnostics rule to detect high 
leverage points. Kamaruzzaman and Imon[17] pointed 
out that high leverage points are a new prime source of 
multicollinearity. It is now evident that high leverage 
collinearity-enhancing observations are those points in 
which their values are in large magnitude at least for 
two explanatory variables.  Since in most of the 
regression analysis, more than one explanatory variable 
exists in the model, investigating some useful methods 
in these cases seems to be necessary. One of the 
handiest methods can be defined as hat matrix. 
 Hat matrix which is traditionally used as a measure 
of leverage points in regression analysis is defined as W 
=X (XT X)−1XT. The most widely used cutoff point of 
the hat matrix is twice-the-mean-rule (2k/n)[14].  
Nevertheless, Hadi[11] pointed out that the hat matrix 
may fail to identify the high leverage points due to the 
effect of high leverage points in leverage structure.  So, 
he introduced another diagnostic tool as follows: 
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where, T T 1

ii i iw x (X X) x−= is the diagonal element of W 

and the i-th, diagonal potential pii can be defined as: 
T T 1

ii i (i ) (i ) ip x (X X ) x−=  where X(i) is the data matrix X 

without the i-th row.  The proposed cut off point for 
potential values pii can be defined as Median (pii)+c 
Mad (pii) (MAD-cutoff point) where c can be the 
constant values of 2 or 3.   Still, this method was unable 
to detect all of the high leverage points. 
 Another diagnostic tool which is called generalized 
potential introduced by [16].Generalized potentials for 
the whole data set can be defined as: 
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Where: 
D = The deleted set which corresponds to the 

suspected outliers  
R = The remaining set from observations after 

deleting d < (n-k) which contains (n-d) cases 
 
 Since there isn’t any finite upper bound for pii

* ’s 
and the theoretical distribution of them are not easy to 
derived, he introduced a MAD-cutoff point for the 
generalized potential as well. 

 Recently, Habshah et al.[9] developed Diagnostic 
Robust Generalized Potential (DRGP) to determine 
outlying points in multivariate data set by utilizing the 
Robust Mahalanobis Distance (RMD) based on 
Minimum Volume Estimator (MVE). We refer this 
method as the DRGP (MVE). The generalized 
potentials in (7) are computed based on the set R 
(remaining set) and the set D (deletion set) obtained 
from the RMD-MVE. Here the RMD-MVE is used to 
identify the suspected high leverage points (set D) and 
then diagnostic approach is used to confirm our 
suspicion.  We then used the MAD-cutoff point to see 
whether all members of the deletion set have potentially 
high leverage or not. 
 Rousseeuw[24] defined RMD-MVE as follows:  
   

1
i R R RRMD (X T (X)) 'C (X) (X T (X)) for i 1,...,n−= − − =   (8) 

 
where, TR(X) and CR(X)  are robust locations and shape 
estimates of the MVE. The merit of DRGP (MVE) 
method is in the swamping of less good leverage as 
high leverage points as compared to the RMD-MVE. 
 
Multi-stage GM-estimator: The Multi-Stage GM-
estimator was developed to overcome the problem of low 
break down point of the GM-estimators [27].  These 
estimators may have high break down point if 
appropriate initial estimators are used. A good starting 
value is always important in an iterative scheme. Table 1 
includes some of the existing Multi-stage GM-
estimators. Walker [28] defined the π-weight function 
which is a typical of least squares outlier diagnostic 
DFFITS where it uses the least squares and a non-
iterated MAD as scale estimator in the initial stage. The 
final estimate is obtained using fully iterated reweighted 
least squares. The first GM-estimator with high 
efficiency, high breakdown and bounded influence was 
proposed by[7]. To overcome the limitation of Walker’s 
method in using LS as initial estimator, Coakley and 
Hettmansperger[7] proposed employing high breakdown 
LTS as initial estimator; LMS scale as scale estimate and 
the robust distance based on MVE as leverage estimates. 
The π-weight estimator is a ratio of the x2 cutoff value 
to the squared Robust Distance. A one-step Newton 
Raphson is used as a convergence approach. 
Simpson[26] has investigated several types of Multi-
stage GM-estimators by considering various outlier 
magnitudes through simulation studies. He verified that 
the combination of GM-and MM-estimators outperform 
other existing methods. The research in this area is at 
the early stage of emergence and some combinations of 
efficient π-weight and ψ-functions may produce 
excellent estimators (Table 1).  
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Table1: Some definition of existing GM-estimators 
 Technique  
 ------------------------------------------------------------------------------------------------------------------- 
Component Walker[28] Coakley and Hettmansperger[7] 
Initial estimate LS LTS 

Scale estimate MAD LMS scale = 1.4826 i

5
1 Median r

n p 1

 
+ − − 

  

Leverage measure hii Robust mahalanobis distance (based on MVE) 

π-weight function 
1

2
ii ii[(1 h ) / (h ) ]−  

2
0.025,p 1

2

x
min 1,

RD
−

   
  
    

    

ψ-function Huber Huber 
Tuning constant 1.345 1.345 
Convergence approach Fully iterated IRLS One-step Newton Raphson 

 
Proposed Multi-stage estimator: One of the 
drawbacks of the existing GM-estimator is in the 
definition of π-weight that depend on Robust Distance 
based on MVE which tends to swamp some low 
leverage points even though it can identify high 
leverage points correctly. Thus, it will produce low 
weights to some of the good leverages as well [9]. In this 
connection the precision of the GM-estimator can be 
improved by utilizing more effective diagnostics 
method.  Subsequently an efficient π-weight function is 
obtained.  This motivates us to consider the DRGP 
which is proposed by Habshah et al.[9] in the calculation 
of the πi-function. The attractive feature of the DRGP is 
that it is very successful in identifying multiple high 
leverage points and swamps less good leverages as high 
leverage points when compared to RMD-MVE.  In this 
study, we proposed Multi-stage GM-estimators by 
incorporating the GM-estimators with slight 
modification in which the DRGP proposed by Habshah 
et al.[9]  is employed in the computation of the  πi. Here, 
the GM- and MM-estimators are considered because 
Simpson et al.[27] enumerated that these estimators 
surpass other robust methods. The first two proposed 
estimators are Multi-stage GM-estimators while the 
others are defined based on the M- and MM-estimator. 
 It is important to point out that in the new proposed 
methods, the DRGP statistics is referred as Pi with MAD-
cutoff points.   Here, we will employ the Tukey’s biweight 
redescending ψ-function[4] which is defined as:  
 

22
t

t 1 if t c
(t) c

0 if t c

    − ≤   ψ =     
 

>  

        (9) 

 
 The Tukey’s biweight   with the   tuning   constant 
c = 4.685 will result a 95% efficiency under normal 
error distribution. A redescending ψ-function is better 
comparing to monotonic functions such as Huber’s 

function because the former assigns lower weights 
(even zero if the residual is too large) to large outliers. 
In this respect, a redescending ψ-functions limits the 
influence of outliers more effectively than a monotone 
ψ-function. The proposed methods can be computed in 
three steps and summarized as follow. 

 
GM-DRGP-L1:  
Step 1: Employ L1 estimators as initial estimate and 
then obtain the standardized residuals of L1 estimator. 
Compute MAD = 1.4826 (med|ri-med(ri)|) for non-zero 
residuals according to Maronna and Yohai[20]. It is 
important to mention that if MAD is computed from all 
the residuals of L1 estimators, the scale estimates will 
become too small due to defining some zero residual. 
Thus, non-null residuals have been used to compute the 
scale estimate.  

 

Step 2: Define i
i

i

MAD cutoff (p )
min 1,

(p )

 −π =  
 

 in (1) and 

use function (9) to assign final weights to the 
observations. 
Step 3: Compute a one step reweighted least squares as a 
convergence approach. 
 
GM-DRGP-LTS:   
Step 1: Consider the LTS as initial estimate and 
compute the standardized residuals and scale estimate 
based on LTS. 
 

Step 2: Define i
i

i

MAD cutoff (p )
min 1,

(p )

 −π =  
 

 in (1) and 

use function (9) to assign final weights to the 
observations. 

 
Step 3: Compute a one step reweighted least squares as 
convergence approach. 



                                                         J. Math. & Stat., 5 (4): 311-321, 2009 
 

315 

M-DRGP:  
Step 1: Compute the residuals of M-estimators scale by 
assigning the initial weight of Wi (DRGP(MVE)) = 

i

i

MAD cutoff (p )
min 1,

(p )

 −
 
 

 where Pi is DRGP(MVE) 

statistics. 
 
Step 2: Define new weights as wi = ri (M-
estimator)/scale (M-estimator) and use a Tukey’s 
biweight to assign final weight to the observations. 
 
Step 3: Compute a one step reweighted least squares. 
 
MM-DRGP: This method is similar to that of M-
DRGP, where on the second and third steps the M-
estimator is replaced with the MM-estimator. 
 
DRGP-MM:  
Step 1: Compute the initial weight Wi (DRGP(MVE)) 
which is defined in the first step of M-DRGP and using 
function (9) to assign final weights to the observations. 
 
Step 2: Compute the weighted MM-estimators by these 
final weights. 
 
Weighted multicollinearity diagnostics: Weighted 
multicollinearity diagnostics are defined as practical 
tools to investigate the source of multicollinearity 
which may be the high leverage points in the data set. 
Indeed, robust estimators to deal with multicolinearity 
problems are largely ignored issues. Walker[28] noted 
that sometimes the weighting process in robust methods 
can decrease the multicollinearity of X matrix. An 
effective measure of robust methods which reduce 
multicollinearity problems due to the presence of 
multiple high leverage points can be defined as 
weighted multicollinearity diagnostics. The two most 
classical and practical multicollinearity diagnostics are 
Correlation X matrix and Variance Inflation Factors 
(VIF) [6]. In bivariate regression analysis, when 
correlation coefficient exceeds 0.9 multicollinearity can 
be detected. However, in the case of more than two 
explanatory variables model, multicollinearity may 
occur in less than 0.9 correlation coefficients [22]. Since, 
this multicollinearity diagnostics is simple and easy to 
compute, it is more preferred [6]. Another practical 
approach to detect multicollinearity is by using 
Variance Inflation Factors (VIF). VIF is defined as 
VIF(i) = (1-Ri

2)−1 where Ri is the coefficient 
determination of regressing each Xi on the other 
explanatory variables, which produced a valuable 
indices to detect inflated variances of regression 

parameter estimations[19]. Cutoff point of 5 and 10 are 
recommended as a rule of thumb for VIF to detect 
moderate and severe multicollinearity, respectively. 
The weighted linear regression can be expressed as a 
transformed model [18]: 

 
Yw = XW β+εw (10) 
 
Where: 
Yw = W1/2Y, Xw =W1/2X  and  εw =W1/2ε 

 
 The final weights of the proposed estimators, 
which are expected to be robust against high leverage 
points, can be used in the computation of weighted 
multicollinearity diagnostics. These diagnostics can be 
defined as a measure to evaluate which method is more 
robust against the high leverage points which are 
responsible for the multicollinearity. It is important to 
note that all high leverage points are not collinearity-
influential and vice versa[11]. The weighted correlation 
matrix can be computed through the correlation matrix 
of Xw. The weighted VIF is defined as follows: 
 
VIFw(i) = (1-Ri

2(w))−1 (11) 
 
where, R2(W) is the coefficient of determination of 
regressing each Xwi on the other weighted explanatory 
variables. It is worth mentioning that if the high 
leverage points are the source of multicollinearity in the 
data set, the weighted multicollinearity diagnostics will 
not detect multicollinearity due to these points 
otherwise multicolliearity will be detected easily.  
 

RESULTS 
 
Numerical example: To evaluate the performance of our 
proposed robust methods a real data set is considered.  
 
Child mortality data set: Gujarati[8] introduced this 
data set with 64 observations which includes child 
mortality as dependent variable and Gross National 
Production (GNP) per capita and Female Literacy 
Rate (FLR) as independent variables. Table 2 presents 
the classical multicollinearity diagnostics methods 
such as the correlation matrix and VIF. It is important 
to note here that the multiple high leverage points will 
be the prime source of multicollinearity when they are 
detected as high leverage points with the large 
magnitude in at least two explanatory variables. The 
diagnostic methods of hat matrix, DRGP(MVE) and 
robust three-sigma edit rule (Eq. 5) for the original 
and    modified   data   set   are   shown   in   Table   3.  
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Table 2:  Multicollinearity diagnostics and least square coefficients of original and modified child mortality data set 
 Cor(X1,X2) VIF b1(t p-value) b2 (t p-value) F p-value  S(e) 

Original data 0.27 1.080 (0.007) -2.230 (0.000) -0.010 0.000 41.75 
Modified data 0.99 37.340 -0.240 (0.512) 0.002 (0.938) 0.003 70.25 

 
Table 3:  High leverage diagnostics for original and modified child mortality data set 

Original data 

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Index hat(X)(0.09) DRGP(X)(0.11) T’

1(3) T’
2(3) 

1 0.02 0.20 0.34 2.16  

5 0.03 0.14 0.89 2.47  

24 0.05 0.90 1.03 6.26  

27 0.05 0.35 1.22 4.15  

30 0.77 31.67 0.47 33.22  

33 0.14 5.52 0.06 13.87  

38 0.05 0.15 1.25 2.54  

53 0.05 1.02 0.97 6.59  

54 0.05 0.14 1.10 0.60  

58 0.07 0.91 1.47 6.48  

62 0.05 0.59 1.16 5.21  
Modified data 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Index Modified X1 hat(X)(0.09) DRGP(X)(0.11) T’1(3) T’2(3) 
24 248 0.03 1.23 5.28 6.26 
27 180 0.02 0.55 3.50 4.15 
30 1107 0.75 34.72 28.01 33.22 
33 490 0.13 6.04 11.69 13.87 
53 258 0.04 1.36 5.56 6.59 
58 255 0.11 0.14 5.47 6.48 
62 214 0.03 0.85 4.39 5.21 

 
Table 4: Multicollinearity diagnostics and least square coefficients of different methods for modified child mortality data set 

Method Cor(x1,x2)>0.9 VIF>5 b1(t p-value) b2(t p-value) F p-value S(e) 

Ls 0.99 37.34 -0.240 (0.512) 0.002 (0.938) 0 70.25 
GM-DRGP-L1 0.98 33.36 -0.680 (0.020) -0.020 (0.340) 0 55.00 
GM-DRGP- LTS 0.65 1.75 -1.780 (0.000) -0.040 (0.000) 0 39.20 
DRGP- MM 0.65 1.74 -1.610 (0.000) -0.040 (0.000) - 36.17 
MM-DRGP 0.90 5.25 -0.690 (0.020) -0.010 (0.330) 0 54.80 
M-DRGP 0.90 5.25 -0.690 (0.020) -0.010 (0.330) 0 54.80 
RLS-LMS 0.65 1.74 -1.800 (0.000) -0.040 (0.000) 0 39.45 
 
In order to obtain a large magnitude of high leverage 
points in X1 as in X2,, the value of 2T '  for X2, should be 

equal to the value of 1T ' for X1 as in Eq. 5. Since the 

observations 24, 27,30, 33, 53, 58 and 62 of variable X2 

were identified as high leverage points by both 2T ' and 

DRGP(MVE) methods, the variable X1 for those 
observations should then be modified such that their 
values become in the same magnitude for both 
explanatory variables. The modified x1 are as follows: 

 
Modified(X1) = T’

2*(Mad(X1))+Median(X1) 

 
 With these modifications, the high leverage points 
are referred as collinearity-enhancing observations. 
Table 4 presents the multicollinearity diagnostics and 

least squares coefficients of the modified child 
mortality data set for the proposed robust methods and 
the existing robust methods (Table 2-4). 

 
Monte Carlo simulation: A simulation study has been 
carried out to further assess the performance of the 
proposed estimators in higher dimensions.  In this 
study, we consider multiple linear regression model 
with moderate sample size equals to 100 and different 
number of explanatory variables, that is p = 3, 5 and 7. 
We set the p+1 true regression coefficients equal to one 
and consider a regression model with intercept. 
Following Rousseeuw and Leroy[25] simulation design, 
each of the p explanatory variables were generated from 
the multivariate normal distribution N (0, 100).  Then 
we start to contaminate the data by generating leverage 
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points from N (100,100).  For each variable, we 
generate high leverage point by deleting ‘good’ 
observation and replacing it with a high leverage point.  
The level of high leverage points varied from 0-50%. 
Here, we consider different error terms which are 
generated from standardized normal distribution, 
exponential distribution with mean equal to one and 
student distribution with 3 and 8 degree of freedoms. 
Belsley et al.[5] pointed out that the estimation of 
regression parameters is unbiased in the presence of 
multicollinearity problems.  However, when the source 
of multicollinearity is multiple high leverage points the 
estimators will be bias. Simpson [26] recommended 
using several indicators of Average Mean Square Error 
of Estimation (AMSEE) performance to determine the 
best overall performance of the existing and proposed 
methods.  The AMSEE is defined by: 

 
R RASMEE mean ( ) '( ) mean(MSEE) = β − β β − β = 
⌢ ⌢

  (12) 
 
Where: 

Rβ
⌢

= The parameter estimation of the proposed methods  

β = The true parameter value 
 

 Thus after finding the MSEE for each generated 
sample size, we take the average in 1000 replications.  
Table 5 shows the AMSEE for a sample of size 100 
with three explanatory variables and standardized 
normal distribution of error for different percentage of 
multiple high leverage points. Simpson[26] introduced 
three indicators  to  evaluate  the AMSEE  performance. 
The first indicator of AMSEE performance is the 
relative AMSEE rank of each technique on different 
levels of high leverage points and different error 
distributions. The AMSEE values are ranked from 
lowest to highest and the Summed Ranks (SR) of each 
technique are obtained. A lower rank indicates a better 
AMSEE performance. The second indicator of 
performance is the standard deviation of the ranks 
(RSD). This indicator is the most important criteria in 
assigning the final ranks to the similar ranks.  Table 5 
includes the AMSEE rankings of the data according to 
these two indicators (Rank (1)).  However, standard 
deviation of the ranks in the final ranks (1) computation 
has not been utilized due to non-equality of the overall 
ranks in Table 5.  

 
Table 5:  AMSEE of n=100 and p=3 for standardized normal error terms 
 AMSEE, n = 100, p = 3 
 ----------------------------------------------------------------------------------------------------------------------------------------------------------- 
Distribution HL (%) Ls M M-DRGP MM MM-DRGP GM-DRGP-L1 GM-DRGP -LTS RLS-LMS   DRGP-MM 

 0 0.04 0.06 0.04 0.05 0.04 0.04 0.04 0.04 0.06 
 10 3.01 0.06 0.05 0.06 0.05 3.06 0.05 0.05 0.06 
 20 3.04 0.08 0.37 0.07 0.07 3.05 0.05 0.21 0.07 
N(0,1) 30 3.05 0.76 2.79 0.75 2.60 3.06 0.06 0.26 0.08 
 40 3.06 3.03 3.33 3.02 3.32 3.07 0.08 0.49 0.08 
 50 3.04 3.06 3.51 3.05 3.49 3.05 0.22 0.66 0.09 

Performance rank AMSEE according to the first and second indicator n = 100, p = 3 
 -------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 0 1.00 3.00 1.00 2.00 1.00 1.00 1.00 1.00 3.00 
 10 3.00 2.00 1.00 2.00 1.00 4.00 1.00 1.00 2.00 
 20 6.00 3.00 5.00 2.00 2.00 7.00 1.00 4.00 2.00 
N(0,1) 30 8.00 5.00 7.00 4.00 6.00 9.00 1.00 3.00 2.00 
 40 5.00 4.00 8.00 3.00 7.00 6.00 1.00 2.00 1.00 
 50 4.00 6.00 8.00 5.00 7.00 5.00 2.00 3.00 1.00 
 SR 27.00 23.00 30.00 18.00 24.00 32.00 7.00 14.00 11.00 
 Overall rank 7.00 5.00 8.00 4.00 6.00 9.00 1.00 3.00 2.00 
 RSD 2.43 1.47 3.29 1.26 2.97 2.73 0.41 1.21 0.75 
 Rank (1) 7.00 5.00 8.00 4.00 6.00 9.00 1.00 3.00 2.00 

Performance rank AMSEE according to the third indicator n = 100, p = 3 
 ------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 0 0 40 0 25 0 0 0 0 50 
 10 7425 50 25 50 25 7550 25 25 50 
 20 7500 100 825 75 75 7525 25 425 75 
N(0,1) 30 7525 1800 6875 1775 6400 7550 50 550 100 
 40 7550 7475 8225 7450 8200 7575 100 1100 100 
 50 7500 7550 8675 7525 8625 7525 450 1550 125 
 SUM 37500 17015 24625 16900 23325 37725 650 3650 500 
 Rank (2) 8 5 7 4 6 9 2 3 1 
Sum of rank (1) and (2) 15 10 15 8 12 18 3 6 3 
N(0,1) Final ranks 6 4 6 3 5 7 1 2 1 
HL (%): Percentage of high leverage points; SR: Sum of Ranks; RSD: Rank SD 
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Table 6: Performance rank (AMSEE) of different methods for n = 100 in different distribution of error terms and different number of 
explanatory variables 

Performance rank (AMSEE) n = 100, p = 3 
 -------------------------------------------------------------------------------------------------------------------------------------------------------- 
Distribution Ls M M-DRGP MM MM-DRGP GM-DRGP-L1 GM-DRGP-LTS RLS-LMS DRGP-MM 
N(0,1) 6.00 4.00 6.00 3.00 5.00 7.00 1.00 2.00 1.00 
Exp(1) 8.00 4.00 5.00 2.00 7.00 9.00 3.00 6.00 1.00 
t(1) 8.00 4.00 7.00 3.00 5.00 9.00 2.00 6.00 1.00 
t(8) 6.00 3.00 5.00 2.00 4.00 6.00 1.00 5.00 1.00 
Sum of rank 28.00 15.00 23.00 10.00 21.00 31.00 7.00 19.00 4.00 
Overall rank 8.00 4.00 7.00 3.00 6.00 9.00 2.00 5.00 1.00 
Rank SD 1.15 0.50 0.96 0.58 1.26 1.50 0.96 1.89 0.00 

Performance rank (AMSEE) n = 100, p = 5 
 -------------------------------------------------------------------------------------------------------------------------------------------------------- 
N(0,1) 6.00 5.00 6.00 4.00 6.00 7.00 1.00 3.00 2.00 
Exp(1) 8.00 6.00 7.00 3.00 7.00 9.00 4.00 5.00 1.00 
t(3) 6.00 5.00 6.00 4.00 6.00 7.00 2.00 4.00 1.00 
t(8) 7.00 4.00 6.00 5.00 6.00 8.00 1.00 3.00 2.00 
Sum of ranks 27.00 20.00 25.00 16.00 25.00 31.00 8.00 15.00 6.00 
Overall rank 7.00 5.00 6.00 4.00 6.00 8.00 2.00 3.00 1.00 
Rank SD 0.96 0.82 0.50 0.82 0.58 0.96 1.41 0.96 0.58 

Performance rank (AMSEE) n = 100, p = 7 
 ------------------------------------------------------------------------------------------------------------------------------------------------------- 
N(0,1) 6.00 5.00 6.00 4.00 6.00 7.00 2.00 3.00 1.00 
Exp(1) 8.00 5.00 7.00 3.00 6.00 9.00 2.00 4.00 1.00 
t(1) 6.00 4.00 5.00 3.00 5.00 7.00 2.00 4.00 1.00 
t(8) 7.00 4.00 6.00 2.00 5.00 8.00 1.00 3.00 1.00 
Sum of ranks 27.00 18.00 24.00 12.00 22.00 31.00 7.00 14.00 4.00 
Overall rank 8.00 5.00 7.00 3.00 6.00 9.00 2.00 4.00 1.00 
Rank SD 0.96 0.58 0.82 0.82 0.58 0.96 0.50 0.58 0.00 
 
Table 7:  Performance final ranks (AMSEE) of different methods for n = 100 in different number of explanatory variables 
Distribution     Ls M M-DRGP MM MM-DRGP GM-DRGP-L1   GM-DRGP-LTS RLS-LMS DRGP-MM 
Final rank p = 3 8.00 4.00 7.00 3.00 6 9.00  2 5.00 1 
Final rank p = 5 7.00 5.00 6.00 4.00 6 8.00 2 3.00 1 
Final rank p = 7 8.00 5.00 7.00 3.00 6 9.00 2 4.00 1 
Sum of ranks 23.00 14.00 20.00 10.00 18 26.00 6 12.00 3 
Final rank (3) 8.00 5.00 7.00 3.00 6 9.00 2 4.00 1 
Rank SD 0.58 0.58 0.58 0.58 0 0.58 0 1.00 0 
Final rank 8.00 5.00 7.00 3.00 6 9.00 2 4.00 1 

 
 A third indicator of AMSEE performance involves 
accounting for the differing AMSEE ranges among 
techniques within different level of high leverage points 
and error distributions. According to Table 5, the spread 
between the highest and lowest AMSEE for 10% high 
leverage points and without high leverage points is 3.01 
and 0.02 respectively. Thus, being ranked last in the 
situation without high leverage points may not be as 
harmful as being ranked last in 10% high leverage 
points. One way for capturing this spread within 
different level of high leverage points is to compute, for 
each level of high leverage points and each error 
distribution, the percent above the minimum AMSEE. 
Thus, according to Table 5, the smallest AMSEE is 
equal to 0.04 and the percent above the minimum 
AMSEE for a technique with AMSEE of 0.05 is 25%. 
The sum ranks of the percent above the minimum 
AMSEE of each technique are recorded which 
represents the third indicator of AMSEE performance 
(Rank (2) in Table 5). Therefore, Ranks in different 

levels of high leverage for each error distribution and 
each specific number of explanatory variables allocated 
by ranking rank (1) and (2) which are illustrated in 
Table 5. 
 The rank in different error distributions for specific 
number of explanatory variables can be computed in 
three steps: 
 
Step 1: rank the sum of the ranks for each error 
distribution in different level of high leverage points 
and for different number of explanatory variables by the 
three introduced indicators. It should be noticed that 
when the sum of the ranks is equal, the ranks assigned 
according to the standard deviations of the Ranks 
should be considered. For instance Table 5 presents the 
ranks of different estimators in different level of high 
leverage points when the error distribution is normal. 
The same procedure can be applied for error 
distributions of exponential with mean equal to one and 
t-student with 3 and 8 degree of freedoms. 
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Fig. 1: Weighted multicollinearity diagnostics for sample 

size of 100 with three and seven explanatory 
variables; (a)   n = 100,    p = 3  (b) n = 100, p = 7 
(c) n = 100, p = 3(d) n = 100, p  = 7 

Step 2: Rank the sum of the ranks for different error 
distribution in different number of explanatory 
variables. Table 6 presents the final Performance rank 
of AMSEE of different estimators for n = 100 in 
different distribution of error terms and different 
number of explanatory variables. 
 
Step 3: Assign final rank (3) by ranking the sum of the 
final ranks for different explanatory variables. Table 7 
consists of final Performance rank of AMSEE for 
different estimators in different number of explanatory 
variables where n = 100.   
 The maximum weighted correlation coefficient and 
maximum weighted VIF for sample of size 100 with 
three and seven explanatory variables are illustrated in 
Fig. 1.  The results for five independent variables are 
consistent and are not included here due to space 
limitations. Here, a good estimator is the one in which 
the maximum correlation coefficient and the maximum 
weighted VIF are not easily affected by the presence of 
high leverage points. 

 
DISCUSSION 

 
 Let us first focus our attention to the result of 
modified child mortality data set which is displayed in 
Table 2. The classical diagnostics measures of the 
original data clearly indicate that the data set doesn’t 
have collinear explanatory variables. The T-tests and F-
test confirm that there exists relationship between the 
explanatory and response variable. This data set has 
two multiple high leverage points based on the hat 
matrix by twice the mean-rule cutoff point, while 
DRGP (MVE) can detect 11 observations as multiple 
high leverage points. The residual standard error of the 
model is quite high due to the value of coefficient of 
determination (0.71)[8]. The high leverage points aren’t 
collinearity-enhancing observations evident by the 
small value of correlation matrix and VIF (Table 2).  
The results of Table 3 signify that all the 2T ' of these 
multiple high leverage points for the original data 
exceeds the cutoff point of 3 which can be considered 
as high leverage points in X2, except for observations 1, 
5, 38 and 54.  It is interesting to point out that after the 
modification (values for variable X1 are modified to 
become high leverage collinearity-enhancing 
observations), the hat matrix can’t detect all of these 
modified observations as multiple high leverage points 
while the DRGP (MVE) statistics identified them as 
high leverage points. The result of Table 2 suggests that 
there is a strong multicollinearity in the modified data 
set.  Moreover, the non-significant of the t-statistics and 
the significant of the F-statistics of the two coefficient 
estimations confirmed the presence of multicollinearity 
in the modified data. The presence of multicollinearity 
has produced larger standard deviation of the errors for 
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the modified data as well. It is important to point out 
that the F-statistics for the DRGP-MM estimator as 
shown in Table 4 can’t be obtained because it is not a 
one step reweighted estimator. It can be observed from 
Table 4 that among the proposed robust methods, only 
three estimators, that is the DRGP-MM, GM-DRGP-
LTS and RLS-LMS can solve the multicollinearity 
problems. This result also suggests that the other 
methods can hardly rectify the multicollinearity 
problem evident by the larger p values and higher VIF 
values.  It is interesting to note that the DRGP- MM has 
the least standard deviation error, followed by the GM-
DRGP- LTS and RLS-LMS. We have not pursued the 
analysis of this example to the final conclusion, but a 
reasonable interpretation up to this stage is that the 
proposed Multi-stage GM-estimators and weighted 
MM-estimator which incorporated the DRGP are able 
to solve the problem of multicollinearity which is 
caused by high leverage points.  
 Next we will discuss the simulation results whether 
they confirm the conclusion of the numerical examples 
that our proposed methods performs better than the 
existing methods. It can be observed from Table 6 that 
DRGP- MM and GM-DRGP-LTS are equally good in 
the situation where the distribution of the error terms is 
normal.  Based on the performance rank and final 
performance rank of AMSEE of Table 6 and 7, 
respectively, the DRGP -MM has the lowest final rank 
value followed by the GM-DRGP- LTS estimator.  It is 
interesting to point out that several Multi-stage 
estimators, namely the MM-DRGP and M-DRGP are 
not performing better than one-stage estimators that is 
the RLS-LMS, MM-estimator and M-estimator.  Thus, 
selecting different estimators to be used in each stage in 
the Multi-stage estimators are important issue to be 
considered. 
 Let us now focus to the result of Fig. 1. The plots 
in Fig. 1a and b show that the Maximum weighted 
correlation coefficient for LS method is equal to 1 
which signify that the LS is very sensitive to high 
leverage points. Increasing the percentage of high 
leverage points in Fig. 1a and b, has increased the 
correlation coefficient of all methods except DRGP-
MM and GM-DRGP-LTS. Moreover, the specific 
weights can’t reduce the maximum weighted 
correlation coefficient much except these two new 
proposed methods. Any change in the number of 
explanatory variables changes the result slightly but 
still acceptable.  
 It can be seen from the maximum weighted VIF 
plots in Fig.1c and d that the maximum weighted VIF is 
less than the cutoff point of 10 for several estimators at 
low percentage of high leverage points. However, as the 
percentage of high leverage points increases, the 

maximum weighted VIF of most estimators exceed the 
cutoff point, except the DRGP-MM and GM-DRGP-
LTS.  It is important to mention here that when the 
percentage of high leverage points increases up to 20%, 
the maximum weighted VIF of LS method increases 
sharply and then decreases at a slower rate.  However, 
the maximum weighted VIF values of LS method are 
still more than the cutoff point. In addition to that, by 
increasing the number of explanatory variables, the 
maximum weighted VIF of almost all of robust 
methods increases. For instance at 50% level of high 
leverage points, the maximum weighted VIF of LS 
method for p = 3 and p = 7 are equal to 42.47 and 
77.52, respectively.  The results of the maximum 
weighted VIF agree reasonably well with the results of 
the maximum weighted correlation coefficient and the 
preceding results that the two newly proposed methods 
outperform other methods considered in this study.  

 
CONCLUSION 

 
 Outliers in the X-direction which are refer as 
multiple high leverage points can render least squares 
estimation meaningless and cause multicollinearity 
problems. Many robust methods have been developed 
to reduce the effect of outliers in the X-direction. 
Nonetheless, the development of robust methods that 
deal with the multicollinearity problems which are 
mainly due to multiple high leverage points has not 
been published extensively in the literature.  The main 
focus of this study is to develop a reliable method for 
correcting the problem of high leverage points 
enhancing multicollinearity.  In this study we 
incorporate the DRGP (MVE), one of the latest 
multiple high leverage diagnostics method with 
different types of robust estimators. The empirical study 
indicates that the  DRGP-MM emerge to be more 
efficient and more reliable than other methods, 
followed by the GM-DRGP-LTS as they are able to 
reduce the most effect of  multicollinearity.  The results 
seem to suggest that the DRGP-MM and the GM-
DRGP-LTS offers a substantial improvement over other 
methods for correcting the problems of high leverage 
points enhancing multicollinearity.  
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