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Abstract. Problem statement: The Least Squares (LS) method has been the mostgodpchnique
for estimating the parameters of a model due t@tsmal properties and ease of computation. LS
estimated regression may be seriously disturbeahtdticollinearity which is a near linear dependency
between two or more explanatory variables in thgregsion models. Even though LS estimates are
unbiased in the presence of multicollinearity, thel be imprecise with inflated standard errorstiod
estimated regression coefficients. It is now evidbat the multiple high leverage points which tre
outliers in the X-direction may be the prime sourck collinearity-influential observations.
Approach: In this study, we had proposed robust proceduresttfe estimation of regression
parameters in the presence of multiple high levenagints which cause multicollinearity problems.
This procedure utilized mainly a one step reweigHeast square where the initial weight functions
were determined by the Diagnostic-Robust Generhlizatentials (DRGP). Here, we had incorporated
the DRGP with different types of robust methodsdtwnweight the multiple high leverage points
which lead to reducing the effects of multicollinga The new proposed methods were called GM-
DRGP-L;, GM-DRGP-LTS,M-DRGP, MM-DRGP, DRGP-MM. Some indicators had beefined to
obtain the best performance robust method amongxisting and new introduced metho&esults:

The empirical study indicated that the DRGP-MM egeeto be more efficient and more reliable than
other methods, followed by the GM-DRGP-LTS as thesre able to reduce the most effect of
multicollinearity. The results seemed to suggeat the DRGP-MM and the GM-DRGP-LTS offers a
substantial improvement over other methods for emtimg the problems of high leverage points
enhancing multicollinearity. Conclusion/Recommendations: In order to solve the multicollinearity
problems which are mainly due to the multiple higherage points, two proposed robust methods,
DRGP- MM and the GM-DRGP-LTS, were recommended.

Key words: Multicollinearity, Multiple high leverage pointsplust estimations, diagnostic robust
generalized potentials method

INTRODUCTION outlying observations in the data set resultingeiss
reliable estimates of the model paramétersThe
Least squares estimation is one of the predominargecond condition that potentially impacts the telity
regression analysis techniques due to the universalf least squares estimation is multicollinearityioh is
acceptance, elegant statistical properties an@ near-linear dependency among the explanatory
computational simplicity. Unfortunately, the variables (X-direction). Multicollinearity can caus
mathematical elegance that makes least squares &wrge variability in the estimation of parameters.
popular depends on a number of fairly restrictimel a Sometimes it causes the parameters estimation to be
often unrealistic assumptions. Two of the assumgtio different from the true values by orders of maghéitor
that make least squares so attractive in term&oé@l  incorrect sign. It may also inflate the variancetio¢
model hypothesis and parameter significance testingstimations. High leverage points, the points fanf
are normality of error distribution and independent the rest of the data in the X-direction, have high
explanatory variables. The normality assumptiontw&n potential for influencing most of the regressiosulés
violated in the presence of one or more sufficientl such as eigenstructure and condition index &f'X
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Had*® noted that collinearity-influential points are where, in this case the diagonal elements of Wtteee
usually the points with high-leverage which tends t weights w defined as:
pull the model fit to their direction. Kamruzzamand

Imon*” introduced these points as a new source of LIJ|:(yi ‘X{BGM)/TTS]
multicollinearity problems. Thus, diaghosing the w; = XB )/
multiple high leverage points and recognizing i =X Bou) 1S
estimation methods which are resistant to thesatgoi
may improve regression estimationé®. Robust
regression methods are designed to be less sensiti
than least squares to outliers mostly in Y-direttio
resulting in improved fits to the non-outlying
observations. In order to achieve this stabilityhust

®)

The main objective of this study is to propose som
gstimators that are able to perform well where iplelt
high leverage points are the cause of the
multicollinearity problems in regression analysis.
Nonetheless, the development of such estimators has
regression limits the influence of outliers. Threest NOt been published extensively in the literatunecs
important properties of any robust regression ardligh leverage points may be collinearity-enhancing
efficiency, breakdown point and bounded infludte observations, we attempt to reduce its influence by

Several works on robust estimation have been pespos €MPloying robust estimator which is known to be
in the literatur8>2. Among them are Hub&# and resistant to high leverage points. In this conbectwe
vohai?® who introduced the M- and MM- estimators. Will consider the bounded influence or Generalikd

However. the M-estimator is not robust in the X- estimatorS® with a major aim of down weighting those

direction and has a low break down point that isatq high leverage points which have large residuals. To
to (1/nf?". The MM- estimator has high efficiency and enhance the GM-estimators, these estimators may be

also possesses high breakdown values. Rousseedlffined as multi-stage estimators where in differen
23241 jntroduced the Least Median of Squares (LMS)stages, different robust techniques are applied to
and Least Trimmed of Squares (LTS) in which bothcombine the desirable properties of each techHiftie
estimators have high breakdown equal to 50%H€nce in this study, we propose mainly new muégst
However, they are unbounded influence estimator&M-estimators and weighted MM-estimators to remedy
(2324] \here the LMS and LTS have low and mediumth€ Problem of collinearity-enhancing observatiams
efficiency value, respectivély. Rousseuw and the parameter estimates of the multiple linearaggjon

Leroy? proposed Reweighted Least Squares based dhodel-
LMS(RLS-LMS) where the LMS scale employed to
standardized the LS residuals and a hard rejection
function utilized to assigned the initial weightsthe

data. Schwepp¥ introduced a class of robust methodsHigh leverage points diagnostic methods: A
which is called the Generalized M-estimators (GM-traditional measure of the outlyingness of an
estimators) with a major aim of downweighting thoseobservation Xwith respect to the sampitethree-Sigma
high leverage points which have large residualsedit rule which is defined as follows:

Simpsoff® has reported that these estimators have high

efficiency and bounded influence properties which  x _x

MATERIALSAND METHODS

achieve a moderate break down point equal to Hp. T T= s (4)
GM-estimator is the solution of the normal equation  \yhere:
= X = The mean oéxplanatory variables
Z"ilﬂ;w(yi‘ixiﬁ)xi =0 (1) s = The standard deviation efplanatory variables
' STy
Where: The robust version of (4) is:
1, =Defined to downweight high leverage points with
high residuals X —Med(X)

s =Arobust scale estimate I:W(X) (5)

Where:

Iteratively Reweighted Least Squares (IRLS) may

be used to solve (1). At convergence, the GM-estima Med(X) = Median(X) . . i
may be written: Mad(X) = The normalized median absolute deviation

PR o about the Median(X) (Mad =
Baw = (XTWX) "X Wy 2) 1.4826(mediafix-median (y0)
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When the distribution of the data is normal, T and Recently, Habshalet al.”! developed Diagnostic
are approximately equal. Any observation which hadobust Generalized Potential (DRGP) to determine
absolute value of , T of' greater than 3, is considered asoutlying points in multivariate data set by utitigi the
outlief®. This method can be used in univariateRobust Mahalanobis Distance (RMD) based on
regression models as a diagnostics rule to deigbt h Minimum Volume Estimator (MVE). We refer this
leverage points. Kamaruzzaman and Ifémointed method as the DRGP (MVE). The generalized
out that high leverage points are a new prime sauafc potentials in (7) are computed based on the set R
multicollinearity. It is now evident that high lenagge  (remaining set) and the set D (deletion set) obthin
collinearity-enhancing observations are those point from the RMD-MVE. Here the RMD-MVE is used to
which their values are in large magnitude at Idast identify the suspected high leverage points (seaiiy
two explanatory variables. Since in most of thethen diagnostic approach is used to confirm our
regression analysis, more than one explanatorabigri suspicion. We then used the MAD-cutoff point t@ se
exists in the model, investigating some useful mash whether all members of the deletion set have piatignt
in these cases seems to be necessary. One of thigh leverage or not.
handiest methods can be defined as hat matrix. Rousseeuft”! defined RMD-MVE as follows:

Hat matrix which is traditionally used as a measure
of leverage points in regression analysis is defm@W  RMD, =\/(x —To(X))'Co(X) (X =T (X)) fori 4,...,.n (8)
=X (X" X)™*X". The most widely used cutoff point of
the hat matrix is twice-the-mean-rule (2Kf)  where, R(X) and G(X) are robust locations and shape
Nevertheless, Haldt! pointed out that the hat matrix estimates of the MVE. The merit of DRGP (MVE)
may fail to identify the high leverage points doethe = method is in the swamping of less good leverage as
effect of high leverage points in leverage struetuSo, high leverage points as compared to the RMD-MVE.
he introduced another diagnostic tool as follows:

Multi-ssage GM-estimator: The Multi-Stage GM-
—_ W (6) estimator was developed to overcome the problelovof
1-w, break down point of the GM-estimatols!. These
estimators may have high break down point if
where, w, =x7(X"X) %, is the diagonal element of W appropriate initial estimators are used. A goodtis
and the i-th, diagonal potentia} gan be defined as: Value is always important in an iterative schenabld 1
b =X (X, X,)'x where X, is the data matrix X includes some of the existing Multi-stage GM-
estimators. Walkef®® defined theteweight function
which is a typical of least squares outlier diagicos
DFFITS where it uses the least squares and a non-
iterated MAD as scale estimator in the initial staghe
final estimate is obtained using fully iterated egdyhted
least squares. The first GM-estimator with high
efficiency, high breakdown and bounded influences wa
proposed b¥l. To overcome the limitation of Walker's
method in using LS as initial estimator, Coakley an
WD Hettmanspergé&t proposed employing high breakdown
P = ey oriOR=w, ™ foriD (7) LTS as initial estimator; LMS scale as scale etinaad
i the robust distance based on MVE as leverage dema
The m=weight estimator is a ratio of thé gutoff value
Where: , to the squared Robust Distance. A one-step Newton
D =The deleted set which corresponds to theRaphson is used as a convergence approach.
suspected outliers _ Simpsoff® has investigated several types of Multi-
R =The remaining set from observations aftergage GM-estimators by considering various outlier
deleting d < (n-k) which contains (n-d) cases magnitudes through simulation studies. He verifteat
the combination of GM-and MM-estimators outperform
other existing methods. The research in this aseat i
the early stage of emergence and some combinations
efficient t-weight and -functions may produce
excellent estimators (Table 1).
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without the i-th row. The proposed cut off poiatr f
potential values jpcan be defined as Median;)pc
Mad (p) (MAD-cutoff point) where c can be the
constant values of 2 or 3.  Still, this method waable
to detect all of the high leverage points.

Another diagnostic tool which is called generalize
potential introduced by*®.Generalized potentials for
the whole data set can be defined as:

Since there isn't any finite upper bound for'e
and the theoretical distribution of them are natyet
derived, he introduced a MAD-cutoff point for the
generalized potential as well.
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Tablel: Some definition of existing GM-estimators

Technique
Component Walké&?! Coakley and Hettmansperer
Initial estimate LS LTS
Scale estimate MAD LMS scale = 1.482{1+ - _E;_ lMediaﬁ {‘]
Leverage measure ih Robust mahalanobis distance (based on MVE)
1 x?2
T=weight function [@-h,)/(h 2] min {1{‘;);2‘”}}
Y-function Huber Huber
Tuning constant 1.345 1.345
Convergence approach Fully iterated IRLS One-steytbin Raphson

Proposed Multi-stage estimator: One of the function because the former assigns lower weights
drawbacks of the existing GM-estimator is in the(even zero if the residual is too large) to largeliers.
definition of rTrweight that depend on Robust Distanceln this respect, a redescendiggfunctions limits the
based on MVE which tends to swamp some lowinfluence of outliers more effectively than a mant
leverage points even though it can identify highy-function. The proposed methods can be computed in

leverage points correctly. Thus, it will producewlo three steps and summarized as follow.
weights to some of the good leverages as Welh this

connection the precision of the GM-estimator can b
improved by utilizing more effective diagnostics
method. Subsequently an efficiemtveight function is
obtained. This motivates us to consider the DRG
which is proposed by Habshahal ! in the calculation _ , n-ze
of thetg-function. The attractive feature of the DRGP is_reSIduals accordl!'lg to Maronna_ and Y&Hai It is
that it is very successful in identifying multipigh ~ Important to mention that if MAD is computed frorh a
leverage points and swamps less good leveragdgfas h the residuals of L estimators, .th.e scale estimates .WI||
leverage points when compared to RMD-MVE. In thisbecome too small due to defining some zero residual
study, we proposed Multi-stage GM-estimators byThus, no_n—nuII residuals have been used to contpete
incorporating the GM-estimators  with  slight scale estimate.
modification in which the DRGP proposed by Habshah
etal.” is employed in the computation of the Here, o [ MAD —cutoff (p.)
the GM- and MM-estimators are considered becaus&t€P 2: Define 1 =min 1’ﬁ'
Simpson et al.””) enumerated that these estimators _ ) ,
surpass other robust methods. The first two prapose!S€ function (9) to assign final weights to the
estimators are Multi-stage GM-estimators while thePPservations. _
others are defined based on the M- and MM-estimator &P 3: Compute a one step reweighted least squares as a
It is important to point out that in the new prepd convergence approach.
methods, the DRGP statistics is referred ;asith MAD-
cutoff points. Here, we will employ the Tukey'svbight
redescending-functiort” which is defined as:

GM-DRGP-L;:

Step 1: Employ Ly estimators as initial estimate and
I:ghen obtain the standardized residuals pfektimator.
Compute MAD = 1.4826 (métmed(¢)|) for non-zero

in (1) and

GM-DRGP-LTS:

Step 1: Consider the LTS as initial estimate and
compute the standardized residuals and scale dstima
based on LTS.

V] .
t|1-| = if|t|<c
w(t) = { (CJ:I (9) VAD —cutof
. i =mi pi)
0 if[t| >c Step 2: Definery =min LT

in (1) and
use function (9) to assign final weights to the
The Tukey’s biweight with the tuning condtan observations.
c = 4.685 will result a 95% efficiency under normal
error distribution. A redescending—function is better Step 3: Compute a one step reweighted least sguares as
comparing to monotonic functions such as Huber'sconvergence approach.
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M-DRGP: parameter estimatiol¥. Cutoff point of 5 and 10 are
Step 1: Compute the residuals of M-estimators scale byecommended as a rule of thumb for VIF to detect
assigning the initial weight of WADRGP(MVE)) = moderate and severe multicollinearity, respectively

- The weighted linear regression can be expresseal as
min| 1, MAD ~eutoff(B) | \here P is DRGP(MVE)  rancsformed moddld: - P

P)
statistics.
Yw = Xw Btew (10)
Step 20 Define new weights as w= r (M-
estimator)/scale (M-estimator) and use a TukeysWhere:
biweight to assign final weight to the observations Yo = WY, X, =W"X ande, =W"%

Step 3: Compute a one step reweighted least squares. The final weights of the proposed estimators,
which are expected to be robust against high Igeera

MM-DRGP: This method is similar to that of M- points, can be used in the computation of weighted

DRGP, where on the second and third steps the Mmulticollinearity diagnostics. These diagnostics ¢

estimator is replaced with the MM-estimator. defined as a measure to evaluate which method is mo
robust against the high leverage points which are
DRGP-MM: responsible for the multicollinearity. It is imparit to

Step 1. Compute the initial weight WDRGP(MVE))  note that all high leverage points are not colliitga

which is defined in the first step of M-DRGIRd using influential and vice ver$dl. The weighted correlation

function (9) to assign final weights to the obséiorzs.  matrix can be computed through the correlation imatr
of Xy. The weighted VIF is defined as follows:

Step 2: Compute the weighted MM-estimators by these

final weights. VIF,(i) = (1-R3w))™* (11)

Weighted multicollinearity diagnostics: Weighted  where, B(W) is the coefficient of determination of
multicollinearity diagnostics are defined as preaiti regressing each Xon the other weighted explanatory
tools to investigate the source of multicollinearit yariables. It is worth mentioning that if the high
which may be the high leverage points in the data s |everage points are the source of multicollineairitthe
Indeed, robust estimators to deal with multicoliitya  Jata set, the weighted multicollinearity diagnastiill
problems are largely ignored issues. WafRenoted not detect multicollinearity due to these points

that sometimes the weighting process in robust atisth  otherwise multicolliearity will be detected easily.
can decrease the multicollinearity of X matrix. An

effective measure of robust methods which reduce RESULTS
multicollinearity problems due to the presence of

multiple high leverage points can be defined asyumerical example: To evaluate the performance of our

weighted multicollinearity diagnostics. The two os proposed robust methods a real data set is coedider
classical and practical multicollinearity diagnostiare

Correlation X matrix and Variance Inflation Factors Child mortality data set: Gujaratf®! introduced this

(VIF)®. In bivariate regression analysis, whendata set with 64 observations which includes child
correlation coefficient eX(_:eeds 0.9 multicollinéaan mortality as dependent variable and Gross National
be detected. However, in the case of more than twergduction (GNP) per capita and Female Literacy
explanatory variables model, multicollinearity may Rate (FLR) as independent variables. Table 2 ptesen
occur in less than 0.9 correlation coefficiefits Since,  the classical multicollinearity diagnostics methods
this multicollinearity diagnostics is simple andsgdo  such as the correlation matrix and VIF. It is inpot
compute, it is more preferrell. Another practical o note here that the multiple high leverage poinits
approach to detect multicollinearity is by using pe the prime source of multicollinearity when treerg
Variance Inflation Factors (VIF). VIF is defined as getected as high leverage points with the large
VIF() = (1-R®)™ where R is the coefficient magnitude in at least two explanatory variablese Th
determination of regressing each; ¥n the other diagnostic methods of hat matrix, DRGP(MVE) and
explanatory variables, which produced a valuableobust three-sigma edit rule (Eq. 5) for the oridin
indices to detect inflated variances of regressiorand modified data set are shown iablé 3.
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Table 2: Multicollinearity diagnostics and least square @ioants of original and modified child mortalityath set

Cor(X1,X2) VIF by(t p-value) h(t p-value) F p-value S(e)
Original data 0.27 1.080 (0.007)  -2.230 (0.000) 010. 0.000 41.75
Modified data 0.99 37.340 -0.240 (0.512) 0.00238)9 0.003 70.25

Table 3: High leverage diagnostics for originad anodified child mortality data set

Original data

Index hat(X)(0.09) DRGP(X)(0.11) 13) T 3)

1 0.02 0.20 0.34 2.16

5 0.03 0.14 0.89 2.47

24 0.05 0.90 1.03 6.26

27 0.05 0.35 1.22 4.15

30 0.77 31.67 0.47 33.22

33 0.14 5.52 0.06 13.87

38 0.05 0.15 1.25 2.54

53 0.05 1.02 0.97 6.59

54 0.05 0.14 1.10 0.60

58 0.07 0.91 1.47 6.48

62 0.05 0.59 1.16 5.21
Modified data

Index Modified X hat(X)(0.09) DRGP(X)(0.11) 13) T2(3)
24 248 0.03 1.23 5.28 6.26
27 180 0.02 0.55 3.50 4.15
30 1107 0.75 34.72 28.01 33.22
33 490 0.13 6.04 11.69 13.87
53 258 0.04 1.36 5.56 6.59
58 255 0.11 0.14 5.47 6.48
62 214 0.03 0.85 4.39 5.21

Table 4: Multicollinearity diagnostics and leastiate coefficients of different methods for modifighdld mortality data set

Method Cor(x,x2)>0.9 VIF>5 h(t p-value) b(t p-value) F p-value S(e)

Ls 0.99 37.34 -0.240 (0.512) 0.002 (0.938) 0 70.25
GM-DRGP-Ly 0.98 33.36 -0.680 (0.020) -0.020 (0.340) 0 55.00
GM-DRGP- LTS 0.65 1.75 -1.780 (0.000) -0.040 (0)000 0 39.20
DRGP- MM 0.65 1.74 -1.610 (0.000) -0.040 (0.000) - 36.17
MM-DRGP 0.90 5.25 -0.690 (0.020) -0.010 (0.330) 0 4.89
M-DRGP 0.90 5.25 -0.690 (0.020) -0.010 (0.330) 0 .864
RLS-LMS 0.65 1.74 -1.800 (0.000) -0.040 (0.000) 0 9.45

In order to obtain a large magnitude of high legera least squares coefficients of the modified child
points in X as in %, the value ofT', for X, should be mortality data set for the proposed robust methraous

equal to the value of " for X; as in Eq. 5. Since the the existing robust methods (Table 2-4).

observations 24, 27,30, 33, 53, 58 and 62 of veriZb _ _ _ _
were identified as high leverage points by bathand ~ Monte Carlo simulation: A simulation study has been

DRGP(MVE) methods, the variable ;Xfor those carried out to further assess the performance ef th
observations should then be modified such thatr theiP'oPosed estimators in higher dimensions. In this
values become in the same magnitude for botistudy, we consider multiple linear regression model

explanatory variables. The modifiegare as follows: ~ With moderate sample size equals to 100 and diftere
number of explanatory variables, that is p = 3n8 &.

We set the p+1 true regression coefficients equahe
and consider a regression model with intercept.
Following Rousseeuw and Lef&y simulation design,
With these modifications, the high leverage pointseach of the p explanatory variables were geneffabeal
are referred as collinearity-enhancing observationsthe multivariate normal distribution N (0, 100).héh
Table 4 presents thmulticollinearity diagnostics and we start to contaminate the data by generating dgee
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points from N (100,100). For each variable, we Thus after finding the MSEE for each generated
generate high leverage point by deleting ‘good'sample size, we take the average in 1000 replitstio
observation and replacing it with a high leveragenp  Table 5 shows the AMSEE for a sample of size 100
The level of high leverage points varied from 0-50% with three explanatory variables and standardized
Here, we consider different error terms which arenormal distribution of error for different percegeaof
generated from standardized normal distributionmyltiple high leverage points. Simp$h introduced
exponential distribution with mean equal to one andpree indicators to evaluate the AMSEE perforcea
student distribution with 3 and 8 degree of freedom The first indicator of AMSEE performance is the
Belsley et al.” pointed out that the estimation of re|ative AMSEE rank of each technique on different
regression parameters is unbiased in the preseihce Ryels of high leverage points and different error
multicollinearity problems. However, when the S®I' - yisyibtions. The AMSEE values are ranked from
of multicollinearity is multiple high leverage painthe lowest to highest and the Summed Ranks (SR) of each

espmators V\II'I.l db_e tb|as. fiimpso[ﬁ Mrecogmendeg technigue are obtained. A lower rank indicates téebe
using severatindicators of Average Mean SqQUuarertIr »y,qpp performance. The second indicator of

of Estimation (AMSEE) performance to determine the erformance is the standard deviation of the ranks
best overall performance of the existing and pregos b

methods. The AMSEE is defined by: (RS_D)._ This in(_jicator is the most_ important crigem
assigning the final ranks to the similar ranks.bl€eb

ASMEE = mear[ B.-B)B.-B ]: mean(MSEE (12)  includes the AMSEE rankings of the data accordmg t
these two indicators (Rank (1)). However, standard

Where: deviation of the ranks in the final ranks (1) comapion

B. = The parameter estimation of the proposed methodéas not been utilized due to non-equality of theraW

B =The true parameter value ranks in Table 5.

Table 5: AMSEE of n=100 and p=3 for standardizedwal error terms
AMSEE, n=100,p=3

Distribution  HL (%) Ls M M-DRGP MM MM-DRGP  GM-DRGR4 GM-DRGP -LTS RLS-LMS DRGP-MM
0 0.04 0.06 0.04 0.05 0.04 0.04 0.04 0.04 0.06
10 3.01 0.06 0.05 0.06 0.05 3.06 0.05 0.05 0.06
20 3.04 0.08 0.37 0.07 0.07 3.05 0.05 0.21 0.07
N(0,1) 30 3.05 0.76  2.79 0.75 2.60 3.06 0.06 0.26 .080
40 3.06 3.03 333 3.02 332 3.07 0.08 0.49 0.08
50 3.04 3.06 351 3.05 3.49 3.05 0.22 0.66 0.09
Performance rank AMSEE according to the first aebad indicator n = 100, p =3
0 1.00 3.00 1.00 2.00 1.00 1.00 1.00 1.00 3.00
10 3.00 2.00 1.00 2.00 1.00 4.00 1.00 1.00 2.00
20 6.00 3.00 5.00 2.00 2.00 7.00 1.00 4.00 2.00
N(0,1) 30 8.00 5.00 7.00 4.00 6.00 9.00 1.00 3.00 .002
40 5.00 4.00 8.00 3.00 7.00 6.00 1.00 2.00 1.00
50 4.00 6.00 8.00 5.00 7.00 5.00 2.00 3.00 1.00
SR 27.00 23.00 30.00 18.00 24.00 32.00 7.00 14.00 11.00
Overall rank  7.00 5.00 8.00 4.00 6.00 9.00 1.00 003. 2.00
RSD 243 1.47 3.29 1.26 2.97 2.73 0.41 121 0.75
Rank (1) 7.00 5.00 8.00 4.00 6.00 9.00 1.00 3.00 .002
Performance rank AMSEE according to the third iatticn = 100, p = 3
0 0 40 0 25 0 0 0 0 50
10 7425 50 25 50 25 7550 25 25 50
20 7500 100 825 75 75 7525 25 425 75
N(0,1) 30 7525 1800 6875 1775 6400 7550 50 550 100
40 7550 7475 8225 7450 8200 7575 100 1100 100
50 7500 7550 8675 7525 8625 7525 450 1550 125
SUM 37500 17015 24625 16900 23325 37725 650 3650 00 5
Rank (2) 8 5 7 4 6 9 2 3 1
Sum of rank (1) and (2) 15 10 15 8 12 18 3 6 3
N(0,1) Final ranks 6 4 6 3 5 7 1 2 1

HL (%): Percentage of high leverage points; SR: $filRanks; RSD: Rank SD
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Table 6: Performance rank (AMSEE) of different neeth for n = 100 in different distribution of errterms and different number of
explanatory variables

Performance rank (AMSEE) n =100, p =3

Distribution Ls M M-DRGP MM MM-DRGP GM-DRGP-L GM-DRGP-LTS RLS-LMS DRGP-MM
N(0,1) 6.00 4.00 6.00 3.00 5.00 7.00 1.00 2.00 1.00
Exp(1) 8.00 4.00 5.00 2.00 7.00 9.00 3.00 6.00 1.00
(1) 8.00 4.00 7.00 3.00 5.00 9.00 2.00 6.00 1.00
t(8) 6.00 3.00 5.00 2.00 4.00 6.00 1.00 5.00 1.00
Sum of rank 28.00 15.00 23.00 10.00 21.00 31.00 07.0 19.00 4.00
Overall rank 8.00 4.00 7.00 3.00 6.00 9.00 2.00 05.0 1.00
Rank SD 1.15 0.50 0.96 0.58 1.26 1.50 0.96 1.89 00.0
Performance rank (AMSEE) n =100,p =5
N(0,1) 6.00 5.00 6.00 4.00 6.00 7.00 1.00 3.00 2.00
Exp(1) 8.00 6.00 7.00 3.00 7.00 9.00 4.00 5.00 1.00
t(3) 6.00 5.00 6.00 4.00 6.00 7.00 2.00 4.00 1.00
t(8) 7.00 4.00 6.00 5.00 6.00 8.00 1.00 3.00 2.00
Sum of ranks 27.00 20.00 25.00 16.00 25.00 31.00 00 8. 15.00 6.00
Overall rank 7.00 5.00 6.00 4.00 6.00 8.00 2.00 03.0 1.00
Rank SD 0.96 0.82 0.50 0.82 0.58 0.96 141 0.96 8 0.5
Performance rank (AMSEE) n =100,p=7
N(0,1) 6.00 5.00 6.00 4.00 6.00 7.00 2.00 3.00 1.00
Exp(1) 8.00 5.00 7.00 3.00 6.00 9.00 2.00 4.00 1.00
t(1) 6.00 4.00 5.00 3.00 5.00 7.00 2.00 4.00 1.00
t(8) 7.00 4.00 6.00 2.00 5.00 8.00 1.00 3.00 1.00
Sum of ranks 27.00 18.00 24.00 12.00 22.00 31.00 00 7. 14.00 4.00
Overall rank 8.00 5.00 7.00 3.00 6.00 9.00 2.00 040 1.00
Rank SD 0.96 0.58 0.82 0.82 0.58 0.96 0.50 0.58 00.0
Table 7: Performance final ranks (AMSEE) of different metiddr n = 100 in different number of explanatoryighles
Distribution Ls M M-DRGP MM MM-DRGP GM-DRGPi GM-DRGP-LTS RLS-LMS  DRGP-MM
Finalrank p=3 8.00 4.00 7.00 3.00 6 9.00 2 500 1
Finalrank p=5 7.00 5.00 6.00 400 6 8.00 2 3.00 1
Finalrank p=7 8.00 5.00 7.00 3.00 6 9.00 2 400 1
Sum of ranks 23.00 14.00 20.00 10.00 18 26.00 6 0012. 3
Final rank (3) 8.00 5.00 7.00 3.00 6 9.00 2 4.00 1
Rank SD 0.58 0.58 0.58 058 0 0.58 0 1.00 0
Final rank 8.00 5.00 7.00 3.00 6 9.00 2 4.00 1

A third indicator of AMSEE performance involves levels of high leverage for each error distributemd
accounting for the differing AMSEE ranges amongeach specific number of explanatory variables alied
techniques within different level of high leverggants by ranking rank (1) and (2) which are illustrated i
and error distributions. According to Table 5, §peead Table 5.
between the highest and lowest AMSEE for 10% high ~ The rank in different error distributions for sgiec
leverage points and without high leverage poin&@®  number of explanatory variables can be computed in
and 0.02 respectively. Thus, being ranked lasthin t three steps:
situation without high leverage points may not le a
harmful as being ranked last in 10% high leverageStep 1: rank the sum of the ranks for each error
points. One way for capturing this spread withindistribution in different level of high leverage ipts
different level of high leverage points is to congudor  and for different number of explanatory variablgsthe
each level of high leverage points and each errothree introduced indicators. It should be notickdtt
distribution, the percent above the minimum AMSEE.when the sum of the ranks is equal, the ranks @edig
Thus, according to Table 5, the smallest AMSEE isaccording to the standard deviations of the Ranks
equal to 0.04 and the percent above the minimunshould be considered. For instance Table 5 preseats
AMSEE for a technique with AMSEE of 0.05 is 25%. ranks of different estimators in different level lifjh
The sum ranks of the percent above the minimumeverage points when the error distribution is nairm
AMSEE of each technique are recorded whichThe same procedure can be applied for error
represents the third indicator of AMSEE performancedistributions of exponential with mean equal to anel
(Rank (2) in Table 5). Therefore, Ranks in différen t-student with 3 and 8 degree of freedoms.
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Fig. 1: Weighted multicollinearity diagnostics feample

Step 2: Rank the sum of the ranks for different error
distribution in different number of explanatory
variables. Table 6 presents the final Performaacd r
of AMSEE of different estimators for n = 100 in
different distribution of error terms and different
number of explanatory variables.

Step 3: Assign final rank (3) by ranking the sum of the
final ranks for different explanatory variables.bl& 7
consists of final Performance rank of AMSEE for
different estimators in different number of explamg
variables where n = 100.

The maximum weighted correlation coefficient and
maximum weighted VIF for sample of size 100 with
three and seven explanatory variables are illiedrat
Fig. 1. The results for five independent variatdes
consistent and are not included here due to space
limitations. Here, a good estimator is the one hicl
the maximum correlation coefficient and the maximum
weighted VIF are not easily affected by the presesic
high leverage points.

DISCUSSION

Let us first focus our attention to the result of
modified child mortality data set which is displdym
Table 2. The classical diagnostics measures of the
original data clearly indicate that the data setsut
have collinear explanatory variables. The T-teats &
test confirm that there exists relationship betwésn
explanatory and response variable. This data set ha
two multiple high leverage points based on the hat
matrix by twice the mean-rule cutoff point, while
DRGP (MVE) can detect 11 observations as multiple
high leverage points. The residual standard erféhe
model is quite high due to the value of coefficieit
determination (0.71Y. The high leverage points aren't
collinearity-enhancing observations evident by the
small value of correlation matrix and VIF (Table. 2)
The results of Table 3 signify that all the, of these
multiple high leverage points for the original data
exceeds the cutoff point of 3 which can be consider
as high leverage points i, Xexcept for observations 1,
5, 38 and 54. It is interesting to point out théier the
modification (values for variable Xare modified to
become high leverage  collinearity-enhancing
observations), the hat matrix can’t detect all lodése
modified observations as multiple high leveragenfmi
while the DRGP (MVE) statistics identified them as
high leverage points. The result of Table 2 suggtmstt
there is a strong multicollinearity in the modifiddta
set. Moreover, the non-significant of the t-statsand
the significant of the F-statistics of the two daaént

size of 100 with three and seven explanatoryestimations confirmed the presence of multicolliitga

variables; () n=100, p=3 (b)n=106,p
(c)n=100,p=3(d)n=100,p =7

in the modified data. The presence of multicolliitya
has produced larger standard deviation of the effiar
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the modified data as wellt is important to point out maximum weighted VIF of most estimators exceed the
that the F-statistics for the DRGP-MM estimator ascutoff point, except the DRGP-MM and GM-DRGP-
shown in Table 4 can't be obtained because it tsano LTS. It is important to mention here that when the
one step reweighted estimator. It can be obsemad f percentage of high leverage points increases 20%,
Table 4 that among the proposed robust methodg, onthe maximum weighted VIF of LS method increases
three estimators, that is the DRGP-MM, GM-DRGP-sharply and then decreases at a slower rate. Haowev
LTS and RLS-LMS can solve the multicollinearity the maximum weighted VIF values of LS method are
problems. This result also suggests that the othestill more than the cutoff point. In addition toath by
methods can hardly rectify the multicollinearity increasing the number of explanatory variables, the
problem evident by the larger p values and highkr V. maximum weighted VIF of almost all of robust
values. It is interesting to note that the DRGRM KMas  methods increases. For instance at 50% level df hig
the least standard deviation error, followed by®¥-  leverage points, the maximum weighted VIF of LS
DRGP- LTS and RLS-LMS. We have not pursued themethod for p = 3 and p = 7 are equal to 42.47 and
analysis of this example to the final conclusiont b 77.52, respectively. The results of the maximum
reasonable interpretation up to this stage is that weighted VIF agree reasonably well with the resafts
proposed Multi-stage GM-estimators and weightedthe maximum weighted correlation coefficient and th
MM-estimator which incorporated the DRGP are ablepreceding results that the two newly proposed nustho
to solve the problem of multicollinearity which is outperform other methods considered in this study.
caused by high leverage points.

Next we will discuss the simulation results whethe CONCLUSION
they confirm the conclusion of the numerical exasspl
that our proposed methods performs better than th
existing methods. It can be observed from Tablbaab t

Outliers in the X-direction which are refer as

%ultiple high leverage points can render least szpia
. estimation meaningless and cause multicollinearity
t?]RG.Ft" 'Y.lM anhd G'\t/lr;DE.GtR'bL-[.S are];\ terz]qually good in problems. Many robust methods have been developed

€ sl llja |oE?wdere ?h IStn ;JIOI’]O eerkmmnlsdlsf_ h) reduce the effect of outliers in the X-direction
hormal. ased on [he performance rank and fing onetheless, the development of robust methods that

performance rank of AMSEE of Table 6 and 7’deal with the multicollinearit -
: . y problems which are
respectively, the DRGP -MM has the lowest finalkran mainly due to multiple high leverage points has not

yalue fqllowed by the GM-DRGP- LTS es'umator. dti been published extensively in the literature. TieEn
Interesting o point out that several I\/ll'llt"s‘ta‘~:]efocus of this study is to develop a reliable metliod
estimators, _namely the MM-DRGP and M'DRGP arecorrecting the problem of high leverage points
not performing better than one-stage estimatorsitha enhancing multicollinearity. In this study we
the RLS-LMS, MM-estimator and M-estimator. Thus, incorporate the DRGP (MVE), one of the latest

selecting different estimators to be used in eé@fesin multiple high leverage diagnostics method with

the l}:ljultl-gtage estimators are important issue € bdifferent types of robust estimators. The empirgtatly
consLl tere ) ; o th It of Fia. 1. The ®lot indicates that the DRGP-MM emerge to be more
- -etus nowtocus to he result of Fig. 1. The POt qghivient and more reliable than other methods,
in Fig. _1a and b.ShOW that the Max”f”“m We'ghtedfollowed by the GM-DRGP-LTS as they are able to
cor.relatlpn _coefﬂuent for L.S method IS .equal to 1reduce the most effect of multicollinearity. Tiesults
which signify that the LS is very sensitive to high eem to suggest that the DRGP-MM and the GM-

leverage points. Increasing the percentage of hig RGP-LTS offers a substantial improvement over othe

Ieverflalgt_e po'”tsﬁ.”? Ft'g'flall andthb,dhas 'ncrf%ssdeghﬁlethods for correcting the problems of high leverag
correfation coetiicient of all methods excep “points enhancing multicollinearity.
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