
 

 

© 2016 Abdelfatah Aref Tamimi. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 

license. 
 

Journal of Computer Sciences 

  

Original Research Paper 

A Key Dependent Encryption Algorithm Based on Multiple 

Bitwise-Shuffling and XOR Variable-Length Partitions 
 

Abdelfatah Aref Tamimi 

 
Department of Computer Science, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan 

 
Article history 

Received: 26-11-2015 

Revised: 21-03-2016 

Accepted: 26-03-2016 

 

Email: drtamimi@zuj.edu.jo 

Abstract: This new algorithm employs shuffling procedures combined 

with variable-length key-dependent XOR and S-box substitutions to 

perform lossless image encryption. This algorithm was implemented and 

tested by performing different permutations of shuffling, XOR encryption 

and S-box substitution. Empirical analysis using different types of test 

images of different sizes showed that this new algorithm is effective and 

resistant to statistical attacks. The idea presented by this algorithm may be 

generalized to apply to input data other than images and may be combined 

with other encryption methods. 

 

Keywords: Shuffling, Cryptography, Stream Cipher, Partition Cipher, S-Box 

 

Introduction 

Cryptography is an essential field of computer 

security used for protecting the confidentiality, integrity 

and availability of information. Wang and Wang (2012) 

have introduced an image encryption algorithm based on 

couple multiple chaotic systems. Security analysis 

showed that the key space of this algorithm is large 

enough to make brute-force attacks infeasible. The 

simulation results also showed that the scheme has high 

performance, so it has a potential value in the field of 

image encryption and image transmission. 

Kaipa et al. (2014) used linear Eigen values and 

several mathematical operations to introduce 

nonlinearity to the linear transformation-based 

cryptosystem using byte substitution over GF(2
8
) and 

variable length sub-key groups. They also conducted 

performance evaluation of the method. 

Ali and Makhzoum (2012) increased the efficiency of 

the decryption process compared to an existing public 

key Luc cryptosystems algorithm by using Divide-By-

Prime computation. 

Do and Song (2014) formed a protocol capable of 

recovering the encrypted streaming media data only if a 

key is shared and stored using All or Nothing 

Transform (AONT). It was based on XOR threshold 

Secret Sharing where the user acquires the Recovery 

Share (Privilege Manager Group) and XOR Share 

(User) to be distributed by Data Owner. Moreover, 

collusion attacks are avoided by realizing the 

management of access privileges and distribution of 

decryption privileges using a Privilege Manager Group. 

Chengqing and Liu (2013) showed that, based on 

some properties of a composite function composed of 

modulo addition and the XOR operation, a known-

plaintext attack and an improved chosen-plaintext attack 

can be provided to determine an equivalent secret key. 

The cryptanalysis highlighted attack vulnerability in 

some encryption schemes based on multiple combination 

of modulo addition and XOR operations. 

Backes and Pfitzmann (2008) presented a Dolev-Yao 

model with XOR with a cryptographic realization secure 

against passive attacks if the surrounding protocol 

additionally guarantees that no incorrect conversion of 

XORs back into other types attempted, except for the 

restrictions on passive attacks and correct type conversions. 

A bitwise XOR operation is normally used as a part 

of a more complex encryption algorithm. Numerous 

variations of the use of XOR in image encryption can 

be found in the literature. In the Advanced Encryption 

Standard (AES), which was adopted by many official 

and commercial organizations worldwide to encrypt 

sensitive data of various formats, XOR is used as a step 

in the encryption procedure for effectively combining data 

being encrypted with the encryption key. Al-Husainy 

(2012) designed an algorithm that combines XOR 

encryption with a rotation operation for effective 

image encryption. Nag et al. (2011) used an affine 

transform combined with XOR encryption to perform 

image encryption. Chatzichristofis et al. (2014) 

effectively encrypted images using the recursive 

attributes of the XOR filter. 

Examples on applying the four steps of AES, 

including the use of S-box substitution, are available. 



Abdelfatah Aref Tamimi / Journal of Computer Sciences 2016, 12 (2): 98.105 

DOI: 10.3844/jcssp.2016.98.105 

 

99 

Many encryption algorithms based on AES were also 

developed. However, El-Fishawy and Abu Zaid (2007) 

and Sivakumar and Venkatesan (2014) and has shown 

that AES has limitations on some image and multimedia 

specific requirements, so other encryption algorithms 

need to be developed.  

A new algorithm is presented, which performs 
lossless encryption in three steps. These steps are 
shuffling, partitioning with XOR groups operation and 
S-box substitution. The first step performs shuffling on 
the image as a stream. The second step partitions the 
result into variable length blocks of key-dependent sizes 
and performs XOR encryption on these blocks. The third 
and final step performs byte substitution using a lookup 
table. The algorithm was implemented and different 
combinations of these steps were tested. Analysis of 
these steps showed different effectiveness of the cipher 
with different combinations of these steps; where using 
all three steps produced the most secure encryption of 
the different combinations. 

The New Algorithm 

This algorithm takes an image and a key as input and 

it works in three steps as follows. It starts with bitwise 

shuffling of the image stream. Then, it partitions the 

resulting image into variable size blocks with key-

dependent sizes, applying a checksum technique to each 

block to produce a new code. Finally, it applies byte 

substitution using a lookup table called S-box. The 

encryption and decryption steps of the algorithm are 

illustrated in Fig. 1, where the three encryption steps are 

independent. Any combination of these three steps may 

be performed, where the decryption performs the inverse 

of the applied steps in reverse order. 

Bitwise Shuffling 

In the first step of the algorithm, the image is 

regarded as a stream of bytes and the encryption 

performed is both key dependent and data dependent. 

One specific bit, call it bitLoc, is chosen by a key-

dependent function. A shuffle vector is constructed by 

listing the numbers of bytes which have the value of bit 

number bitLoc equal to one, followed by the numbers of 

bytes which have the value of bit number bitLoc equal to 

zero. This vector gives the new locations of the input 

bytes; which are numbered left to right. This step is 

repeated for several iterations. Each iteration uses a 

different bitLoc and applies the same steps to the new 

image that resulted from the preceding iteration. Let the 

bytes of an (n × m)-byte image be numbered left to right, 

row by row, starting with number (j = 0) for the first byte 

of the first row and ending with number (j = nm-1) for 

the last byte of the last row. The encryption algorithm 

using bitwise shuffling is as in the algorithm designed by 

Yahya and Abdalla (2008; 2009). 

The Bitwise Shuffle step uses a key-dependent 
function to specify the location of the shuffle bit 
(bitLoc), where 0 ≤ bitLoc ≤ 7. It runs for a given 
number of iterations; k. Then, a shuffle vector is 
constructed by listing the numbers of bytes with the 
value of bit number bitLoc equal to one, followed by 
the numbers of bytes with the value of bit number 
bitLoc equal to zero. This vector gives a mapping that 
specifies the new location of each byte in the image. 
In each one of the subsequent iterations, a different 
bitLoc is chosen and the same steps are applied to the 
image that resulted from the preceding iteration. Note 
that the value of bitLoc can be represented by three 
bits, which requires a total length to 3k bits to 
represent all values of bitLoc. The algorithm outlining 
this step is given below. 
 

 For i = 0 to k-1 

 bitLoc = Key[i] 

 D = Vector where D[j] is the value of bit (bitLoc) of 

the j
th

 byte of the current image 

 S0 = Vector containing numbers of current image 

bytes (j) that have (D[j] = = 0) 

 S1 = Vector containing numbers of current image 

bytes (j) that have (D[j] = = 1) 

 Shuffle = Concatenation of S1 with S0 

 Substitute the bytes of current image so that the new 

location of byte (j) is byte (Shuffle[j]) 

 Replace bit (bitLoc) of the j
th
 byte with D[j] in each 

byte of current image 

 End For 

 

Stream Partition 

In the stream partition step, including the XOR 

encryption operation, the image is regarded as a stream 

of bytes and then it is divided into groups (one-

dimensional blocks). Let the input image have n bytes 

and let the key have b bytes referred to as key[0] through 

key[b-1]. The image is divided into approximately 
1

0
/ [ ]

b

i
n key i

−

=∑  groups of bytes. Group number j will 

consist of key[i] bytes where j = (b × c + i) for some non-

negative integer c. 

For example, with a key of 16 bytes where the value 

of its key[5] = 70, there will be groups in the image 

consisting of 70 bytes each, namely: The groups 

numbered 5, 21, 37, 53, 69, etc. 

XOR Groups Operation 

Each of the above groups is encrypted with XOR as 

follows. Suppose the bytes of group number j are G[0] 

through G[key[i]-1]. Then, the encrypted values will be: 
 

[ ] [ ] [ ]( )
[ ] [ ] [ ]( ) [ ]

’ 0 0  XOR

’  XOR ’ 1  for 0 -1

G G key i and

G p G p G p p key i

=

= < ≤-

 (1) 



Abdelfatah Aref Tamimi / Journal of Computer Sciences 2016, 12 (2): 98.105 

DOI: 10.3844/jcssp.2016.98.105 

 

100 

 
 

Fig. 1. Diagram showing the steps of the algorithm 
 

Each group is encrypted similarly but independently 

of the other groups. This is the same techniques used in 

Internet checksum but with variable group sizes. 

S-Box Substitution 

The two-dimensional substitution table, known as S-

box, is constructed to perform two transformations: 
multiplicative inverse and affine transformation. This 

nonlinear key-dependent substitution was presented as a 
single step in each iteration of the AES algorithm. 

However, in the new algorithm presented here, this 

substitution is performed at most two times. It is either 
applied before, after, or both before and after the XOR 

encryption operation. It is applied to the entire image; 
block by block. The S-box substitution in this algorithm 

may also be skipped if needed. If S-box substitution is 
skipped, another substitution or shuffling operation 

should be applied in addition to the XOR encryption, so 

that no encrypted group will remain intact or in the same 
location inside the image as produced by the XOR 

encryption operation. 
The decryption algorithm is similar to the encryption 

algorithm, where each of the above steps can be easily 

inverted. This decryption restores the original image 

without any loss. 

Example 

Let the input be: (234, 124, 29, 35, 245, 44, 189, 222) 
with key = (3, 5). This input is represented by the binary 
numbers in the first column of Table 1. Suppose the first 
step; Bitwise Shuffle, runs for 3 iterations and specifies 
the locations of the shuffle bit (bitLoc) to be 0, 4 and 3. 
In the first iteration, bitLoc = 0. Based on the values of 
this bitLoc, D = 00111010, S0 = (0, 1, 5, 7) and S1 = (2, 
3, 4, 6), which make the shuffle vector (2, 3, 4, 6, 0, 1, 5, 
7). This vector gives the new locations of the input 
bytes; which are numbered left to right. Then, the input 

after the shuffle substitution will be as shown in the 
second column of Table 1. Now, D is used for replacing 
each bit (bitLoc) to give the result shown in the third 
column of Table 1. This result is used by the second 
iteration, where bitLoc = 4. Now, D = 10110101, S0 = 
(1, 4, 6) and S1 = (0, 2, 3, 5, 7), which make the shuffle 
vector (0, 2, 3, 5, 7, 1, 4, 6) and its result is shown in the 
fourth column of Table 1. Placing the bits from D into 
this result gives the result shown in the fifth column of 
Table 1. Similarly, the third iteration has bitLoc = 3, 
producing D = 10111011 resulting in the sixth and 
seventh columns of Table 1. The decimal representation 
of this result is (28, 181, 124, 206, 235, 53, 237, 58). 

After that, stream partition is performed with XOR 
operations. To demonstrate this step for this simple 
example, let key[0] = 3 and key[1] = 5, so the 8-byte 
input is partitioned into two group; one with 3 bytes and 
the other with the remaining 5 bytes. Performing the 
XOR groups operation gives the result (31, 5, 238, 203, 
5, 238, 219, 54). Finally, S-box substitution is performed 
producing a result dependent on the values of S-box, 
such as (192, 107, 40, 31, 107, 40, 185, 5). 

The inverse of this example starts with this result and 
works back to extract the original input as follows. First, 
Inverse S-box is applied to this result to obtain the vector: 
(31, 5, 238, 203, 5, 238, 219, 54). Then, XOR groups 
operation and concatenation produce the vector: (28, 181, 
124, 206, 235, 53, 237, 58). After that, the vector D = 
10111011 is extracted from bit number 5, which is the 
bitLoc taken from the key. This gives S0, S1 and shuffle 
vector as obtained in the last (i.e., third) iteration of the 
Bitwise Shuffle step of the encryption. The unshuffle 
operation is performed and then the values of bit 5 in 
each byte is replaced with its corresponding value from 
D restoring the result of the second Bitwise Shuffle 
iteration. Similarly, the result from the first Bitwise 
Shuffle iteration is restored and then the original input 
vector is produced in the same manner. 



Abdelfatah Aref Tamimi / Journal of Computer Sciences 2016, 12 (2): 98.105 

DOI: 10.3844/jcssp.2016.98.105 

 

101 

Table 1. Example data obtained by applying Bit Shuffling 

 1st Iteration  2nd Iteration  3rd Iteration 

Original data (bitLoc = 0) 1st Replace D (bitLoc = 4) 2nd Replace D (bitLoc = 3) 3rd Replace D 

11101010 00011101 00011100 00011100 00011100 00011100 00011100 

01111100 00100011 00100010 11110101 11100101 10111101 10110101 

00011101 11110101 11110101 10111101 10111101 01111100 01111100 

00100011 10111101 10111101 01111100 01111100 11001110 11001110 

11110101 11101010 11101011 11011110 11001110 11101011 11101011 

00101100 01111100 01111100 00100010 00110010 00111101 00110101 

10111101 00101100 00101101 11101011 11101011 11100101 11101101 

11011110 11011110 11011110 00101101 00111101 00110010 00111010 

 

Implementation and Analysis 

The security of the new algorithm comes from 
combining the three encryption operations; using bitwise 
shuffling, XOR encryption and S-box byte substitution. 
If XOR encryption is used alone, the encryption may 
become vulnerable to brute-force and plaintext attacks. 
Using S-box substitution alone could make the encryption 
vulnerable to statistical attacks. A combination of these 
three encryption operations will provide significant 
resistance to all of these types of attacks. 

If one or more bits in the key are changed, it causes a 
different grouping in the XOR step and the XOR values 
are changed. In addition, let an S-box of size 16×16 bytes 
be used in the S-box substitution step. This S-box has 
2,048 different entries where each of these entries consists 
of 8 bits. This makes the total number of permutations for 
this step is 2

11
. Consequently, for an image of ten or more 

kilobytes input to any combination of these two 
encryption operations, a brute-force attack is impossible. 

The algorithm was applied to 50 images of various 
types and sizes ranging from 2 to 30 kilobytes (kB). 
When different combinations were used with the same 
image, they produced different encrypted images. In 
addition, analysis using histograms, correlation and Peak 
Signal to Noise Ratio (PSNR) showed properties of the 
algorithm that strongly resist statistical attacks. 

As seen in Fig. 2, the histograms of the images 
encrypted with any combination of the operations of the 
new algorithm were relatively uniform and different 
from the histograms of the original images. They gave 
little indication that may help statistical attacks. As seen 
in the figure, using two steps of encryption (partition and 
shuffling) produced histogram slightly different from the 
one using partition alone, where using all three steps of 
the algorithm gave the best results. 

The mean squared error for two images, stored in 
matrices A and B, is computed as follows: 
 

( )2

1 1

1
[ , ] [ , ]

m n

i j

MSE A i j B i j
mn = =

= −∑∑  (2) 

  
PSNR is computed as: 

 
2

1010 log
MAX

PSNR
MSE

 
=  

 
 (3) 

Where: 

MAX = The maximum pixel value of the image 

PSNR = Measurement unit is the decibel (dB) 

 

A lower PSNR value is desired for encrypted images 

since it indicates more noise and, therefore, more 

resistance to attacks. 

Figure 3 shows PSNR computed for encrypted images 

resulting from encrypting the original image using 

different combinations of partitioning, XOR and S-box 

encryptions: Partitioning with XOR alone, partitioning 

with XOR followed by shuffling and applying all three 

steps. As it appears in the figure, the PSNR values of these 

methods were similar. The average PSNR values for the 

results are shown in the second column of Table 2. The 

average PSNR value was the highest (i.e., best) when 

applying all three steps, where using only one or two steps 

produced a close average result. The average was slightly 

lower when two steps were used and the lowest (worst) 

when only one step is used. 

The correlation, r, between two images, stored in 

matrices A and B, is computed as follows, where A  and 

B  are mean values for matrices A and B, respectively: 
 

1 1

2 2

1 1 1 1

( [ , ] )( [ , ] )

( [ , ] ) ( [ , ] )

m n

i j

m n m n

i j i j

A i j A B i j B

r

A i j A B i j B

= =

= = = =

− −

=
  

− −  
  

∑∑

∑∑ ∑∑
 (4) 

 
A lower correlation value between an image and its 

encryption indicates less resemblance between them, 

which provides more resistance to attacks. 

The correlation value computed for encrypted images 

resulting from encrypting the original image using different 

combinations of XOR and S-box encryptions is shown in 

Fig. 4. As seen in the figure, using XOR without S-box 

generally gave the highest (worst) value of all four 

encryption combinations, while other encryption 

combinations gave values similar to each other. This 

observation is supported by the average correlation value 

computed for each operation combination, shown in the 

third column of Table 2, where the average was taken for 

the absolute values of correlation for the sample images. 



Abdelfatah Aref Tamimi / Journal of Computer Sciences 2016, 12 (2): 98.105 

DOI: 10.3844/jcssp.2016.98.105 

 

102 

 
 

Fig. 2. Histograms of image encrypted with the combination of the operation of the new algorithms 



Abdelfatah Aref Tamimi / Journal of Computer Sciences 2016, 12 (2): 98.105 

DOI: 10.3844/jcssp.2016.98.105 

 

103 

 
 
Fig. 3. PSNR resulting from different combined operations 
 

 
 
Fig. 4. Correlation resulting from different combined operations 
 
Table 2. Average values with different combinations of 

encryption operations (50 images) 

Operation 

combination PSNR Correlation Entropy MSSIM 

Partition 9.07 0.032 7.967 0.0203 

Partition 9.11 0.005 7.968 0.0188 

and shuffling 

Partition, shuffling 9.21 0.003 7.965 0.0177 

and S-box 

 

The average correlation computed when applying S-box 

once was lower than the average computed when S-box 

was used twice and did not make much difference 

whether S-box was applied before or after XOR. 

The randomness of pixel values can be measured 

with entropy, where entropy is computed as follows: 

 

2

1

( )( )log ( ( ))
MAX

i

H P i P i
=

= −∑  (5) 

 

Where: 

MAX = The maximum pixel value of the image 

P(i) = The probability of the occurrence of pixel value i 

 

A higher entropy indicates higher randomness and, 

consequently, higher resistance to statistical attacks. The 

average entropy value for the original sample images 

was 2.65707. Using any of the three encryption steps 

produced clearly higher entropy than the original image, 

as seen from the plotted values in Fig. 5. It can be 

observed from the figure that the entropy results when 

using one, two or all three steps of the algorithm were 

relatively similar. These results are supported by the 

average entropy values shown in the third column of 

Table 1. Even though the high values of entropy 

indicated high randomness and resistance to attacks, they 

did not differentiate among the use of one, two, or all 

three steps of the algorithm. This is due to the relatively 

small size of sample space of pixel values (0 to 255). 

Examining the difference between the average entropy 

values from the use of one, two, or all three steps, 

obtained from the fourth column of Table 2, it can be 

seen that the maximum difference between any two 

values is 0.037%. This is a negligible small value that 

does not show which combination of steps is better than 

the others. Therefore, other statistical analysis methods 

must be used, such as PSNR, correlation and SSIM. 

Structural Similarity (SSIM) index is a method for 

measuring the perceived quality of digital images and 

videos or measuring the similarity between two images. It 

is a perception-based model that considers image 

degradation as perceived change in structural information, 

while also incorporating important perceptual phenomena. 

It may be used in measuring image quality based on an 

initial distortion-free image as reference. SSIM is 

designed to improve on traditional methods like Peak 

Signal-to-Noise Ratio (PSNR) and Mean Squared Error 

(MSE) by focusing on structural information rather than 

absolute error. SSIM is computed as in Equation 1: 
 

( ) 1 2

2 2 2 2

1 2

(2 )(2 )
,

( )( )

x y xy

x y x y

c c
SSIM x y

c c

µ µ σ

µ µ σ σ

+ +
=

+ + + +
 (6) 

 
Where: 

• µx the average of x 

• µy  the average of y 

• 2

x
σ  the variance of x 

• 2

yσ  the variance of y 

• σxy the covariance of x and y 

• c1 = (k1 L)
2
, c2 = (k2 L)

2
 two variables to stabilize the 

division with weak denominator 

• L the dynamic range of the pixel-values (typically 

this is 2
bpp

 -1), bpp is bits per pixel 

• k1 = 0.01 and k2 = 0.03 by default 

 

For a single overall quality measure of an image, the 

Mean SSIM (MSSIM) value for two images, X and Y, 

with M local windows is computed as in Equation 7: 

 

( ) ( )
1

1
, ,

M

j j

j

MSSIM X Y SSIM x y
M =

= ∑  (7) 



Abdelfatah Aref Tamimi / Journal of Computer Sciences 2016, 12 (2): 98.105 

DOI: 10.3844/jcssp.2016.98.105 

 

104 

 
 
Fig. 5. Entropy resulting from different combined operations 

 

 
 
Fig. 6. MSSIM resulting from different combined operations 

 

A low MSSIM for encrypted images is desired since 

it indicates more degradation in the encrypted image, 

i.e., less resemblance to the original image. The MSSIM 

values for different combinations of the encryption steps 

are illustrated in Fig. 6. The MSSIM values using one, 

two or all three steps were not visibly different in the 

figure. However, the average of these values, computed 

for all sample images, was lower (i.e., better) when using 

two steps rather than one step and it was the best when 

using all three steps of the algorithm. These averages are 

shown in the last column of Table 2. 

Overall, all PSNR values were high and all correlation 

and MSSIM values were low. This indicates resistance to 

statistical attacks. The different statistical analysis results 

agreed in showing the increase in encryption effectiveness 

with each added step of the algorithm. 

Conclusion 

A new encryption algorithm was presented. The new 

algorithm employs shuffling procedures combined with 

variable-length key-dependent XOR and S-box 

substitutions to perform lossless image encryption. 

Analysis of different combinations of these encryptions 

showed that applying all three produced the best results 

compared to using only one or two encryptions. 

Statistical analysis using histograms, PSNR, 

correlation, entropy and MSSIM showed the algorithm is 

not vulnerable to statistical attacks. In addition, the huge 

number of possible keys combined with a huge number 

of possible substitutions makes a brute-force attack on 

the algorithm impossible. 

Acknowledgement 

The author likes to thank and acknowledge Dr. 
Ayman Abdalla for his suggestions to improve the 
quality of the paper. 

Funding Information 

This study was supported by Al-Zaytoonah 
University of Jordan. 

Ethics 

This article is original and contains unpublished 
material. The corresponding author confirms that all of 
the other authors have read and approved the manuscript 
and no ethical issues involved. 

References 

Al-Husainy, M.A.F., 2012. A novel encryption method 
for image security. Int. J. Secur. Applic., 6: 1-8. 

Ali, Z.M. and N.M.A. Makhzoum, 2012. Computation of 
private key based on divide-by-prime for Luc 
cryptosystems. J. Comput. Sci., 8: 523-527. 
DOI: 10.3844/jcssp.2012.523.527 

Backes, M. and B. Pfitzmann, 2008. Limits of the 
BRSIM/UC soundness of Dolev-Yao-style XOR. 
Int. J. Inf. Secur., 7: 33-54. 

  DOI: 10.1007/s10207-007-0040-z 
Chatzichristofis, S.A., O. Marques, M. Lux and            

Y. Boutalis, 2014. Image encryption using the 
recursive attributes of the eXclusive-OR filter on 
cellular automata. J. Cellular Automata, 9: 125-137. 

 DOI: 10.1007/978-3-642-33350-7_35 
Chengqing, L. and Y. Liu, 2013. Breaking a chaotic 

image encryption algorithm based on modulo 
addition and XOR operation. Int. J. Bifurcat. Chaos, 
23: 1350075-1350087. 

 DOI: 10.1142/S0218127413500752 
Do, J.M. and Y.J. Song, 2014. Secure streaming media 

data management protocol. Int. J. Secur. Applic., 8: 
193-202. 

El-Fishawy, N. and O.M. Abu Zaid, 2007. Quality of 
encryption measurement of bitmap images with 
RC6, MRC6 and Rijndael block cipher algorithms. 
Int. J. Net. Sec., 5: 241-251. 

Kaipa, A.N.R., V.V. Bulusu, R.R. Koduru and           
D.P. Kavati, 2014. A hybrid cryptosystem using 
variable length sub key groups and byte substitution. 
J. Comput. Sci., 10: 251-254. 
DOI: 10.3844/jcssp.2014.251.254 



Abdelfatah Aref Tamimi / Journal of Computer Sciences 2016, 12 (2): 98.105 

DOI: 10.3844/jcssp.2016.98.105 

 

105 

Nag, A., J.P. Khan, S. Singh, S. Biswas and D. Sarkar et al., 

2011. Image encryption using affine transform 

and XOR operation. Proceedings of the 

International Conference on Signal Processing, 

Communication, Computing and Networking 

Technologies, Jul. 21-22, IEEE Xplore Press, 

Thuckafay, pp: 309-312. 

 DOI: 10.1109/ICSCCN.2011.6024565 

Sivakumar, T. and R.A. Venkatesan, 2014. A novel 

approach for image encryption using dynamic SCAN 

pattern. IAENG Int. J. Comput. Sci., 41: 91-101. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wang, X.Y. and T. Wang, 2012. A novel algorithm for 
image encryption. Int. J. Modern Phys. B, 26: 
1250175-1250184. 

 DOI: 10.1142/S0217979212501755 

Yahya, A. and A.M. Abdalla, 2009. An AES-based 

encryption algorithm with shuffling. Proceedings of 

the International Conference Security and 

Management, (SAM’ 09), pp: 113-116. 

Yahya, A.A. and A.M. Abdalla, 2008. A shuffle image-

encryption algorithm. J. Comput. Sci., 4: 999-1002. 

DOI: 10.3844/jcssp.2008.999.1002 


