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ABSTRACT

The naive Bayes classifier is considered one of fwst effective classification algorithms today,
competing with more modern and sophisticated diassi Despite being based on unrealistic (naive)
assumption that all variables are independent,ngitie output class, the classifier provides prapsuilts.
However, depending on the scenario utilized (neltwstructure, number of samples or training cases,
number of variables), the network may not provigerapriate results. This study uses a processhilaria
selection, using the chi-squared test to verify élxestence of dependence between variables in ke d
model in order to identify the reasons which pré\emayesian network to provide good performance. A
detailed analysis of the data is also proposedkeuther existing work, as well as adjustmentsase of
limit values between two adjacent classes. Furtbezmvariable weights are used in the calculatiba o
posteriori probabilities, calculated with mutuafarmation function. Tests were applied in both dvea
Bayesian network and a hierarchical Bayesian ndtwafter testing, a significant reduction in ernate
has been observed. The naive Bayesian networkrpeesa drop in error rates from twenty five perdent
five percent, considering the initial results oé ttlassification process. In the hierarchical nekwthere
was not only a drop in fifteen percent error ratg, also the final result came to zero.

Keywords: Bayesian Network, Entropy, Feature Weighting, Mutnformation, Small Sample Set

1. INTRODUCTION using the mutual information function to quantify
dependency relations between variables in a datdelmo
Many tasks, including fault diagnosis, pattern zhang (2004) proposes a new explanation on thelente
recognition and forecasting can be seen as cleasth  performance of naive Bayes classifier by introdgidine
(Cheng and Greiner, 1999) The classification Isaae Concept of local dependence_ In the Study by (ﬁw,
task in data analysis and pattern recognition which2011) weights are assigned to the variables ofitte set
requires the construction of a classifier, thagifunction  py using the Kullback-Leibler measure.
that assigns a class tag to examples describedsby af However, most of the work already developed did
variables. The inference of classifiers on data seéth not care with the assignment process of categories
pre-classified cases is a central problem in machin (discretization) for values of variables in the alaet.
learning. Several approaches to this problem aseda |t is easy to see that attributes with boundaryueal
on functional representations such as decisionstree can compromise the classification task, since chrang

neural networks and rules (Friedmeiral., 1997). the category of a variable can change the valuthef
The use of statistical tests to identify relatidpsh  output variable.
and build the graphical structure of a network hasn The objective of this study was to identify andreot

frequently used. Cheng and Greiner (1999) use eepso  characteristics of a training data set that cotfiecathe
of selecting variables (and discarding others)ywab as classification process, especially in relation toe t
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allocation of categories to the variable valuegraming
cases. As regards to model variables that were tesed
construct the network structure, a process of bigia
selection was applied by using chi-squared test to

verify the association between two variables. ldeorto
control the influence of each variable in calculgti

probabilitya posteriori, variable weights were calculated
using the mutual information function.
Therefore, by acting in the process of categorizing

values of the data set, in selecting variablesftivan the

network structure and in reducing or increasing leawh Fig. 1. Graphic structure of a naive Bayesian network
variable affects the output class, it is expecterksult in

a performance increase by the Bayesian clasdifidiceed. °

1.1. Theoretical Background
1.1.1. Bayesian Networks

Bayesian networks (Pearl, 1988) are powerful tools
for knowledge representation and inference under
conditions of uncertainty that have only been cdersd °
classifiers upon the discovery of the naive Bayes
classifier. Surprisingly effective, the naive Bayes

classifier is essentially a simple Bayesian network \
which every variable is considered independent rad o
another, given the classification node (Cheng and
Greiner, 1999).
A Bayesian network is a systematic way to representrig. 2 Graphic structure of a hierarchical Bayesian network

relationships between the independent variablesutir (with intermediate nodes)
a data structure (directed graphs), in which eamteris
labeled with quantitative probability informatio@raphs The naive Bayes classifier presented in Equation (2

are directed and acyclic, in which nodes representis the simplest representation of Bayesian netwairks

variables; arcs represent the existence of diraosal  which every variable is independent, given the slas

influence among bound variables; and the intensfty variable value. This condition is called conditibna

such influences is expressed by conditional prdit@si  independence. Although the hypothesis of conditiona

(Pearl, 1988). They are used to represent domairindependence is seldom true (Zhang, 2004), theenaiv

knowledge through relations of dependence betweerBayes classifier has surprisingly surpassed many

random variables (graphicallyg,priori probabilities and  sophisticated classifiers in a large number of skit

conditional probabilities among variables. especially where variables are not strongly coteela
Bayesian networks allow efficient calculations af  (Cheng and Greiner, 1999):

posteriori  probability of any random variable

(inference), through a recursive definition of Bsiye P(BIA):P(AlB)P(B) )

theorem. The Bayes’ theorem, presented in Equétipn P(A)

the basis of all Artificial Intelligence modern $yms for

probabilistic inference, allows to simplify express d=argmax. O P(djlaﬁ_Dd P@ | (2)

through assertions of independence, discovering new :

relations ~ between  independent  variables.  This | the graphic representation of a naive Bayesian
simplification is possible because these statementSyetwork €ig. 1), all nodes are connected to the

which are based on knowledge about the problemgiassification node and no other connection isveeid.
domain, will dramatically reduce the amount of This assumption of conditional independence in all
information necessary to specify probability distitions nodes does not exist in a Hierarchical Bayesiawari,
(Russel and Norvig, 2009). given the output nodé-{g. 2), according to Equation (3):
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P(C |AB)=0 P(C D, P(AID)P(B|P )P(D |C (3) is a measure of the discrepancy between the expecte
and observed frequencies, obtained by Equation (6):

Which ,
C = Output node 0, -E
AB = Chilz nodes SEDINDY Jc‘l{(JEEJ)] ©
D = Intermediate node !
i = i-th output class
j = j-thclass of intermediate variable Which:
a = Normalization constant O; = Observed frequency in row i and column j
. E; = Expected frequency in rowi and column |,
1.2. Mutual Information assuming kitrue

The notion of independence is a special case of a ypger H, the y statistics follows a chi-square

more general concept known as mutual information gistripution with degrees of freedom equal to Eigue?):
(Darwiche, 2009), according to Equation (4):

P(a.b) df =(R-1) (C- 1) 7)

MI(A;B)de! ) . oP(@,b)log vy

(4)
1.4. Related Work

The result of the mutual information function wik The approach used in the study of (Cheng and
non-negative and equal to zero only if variableand Y Greiner, 1999) seeks to automatically learn thecttire
are independent. More generally, mutual information of Bayesian networks, identifying conditional
measures the extent to which the observation of ondndependence relations between network nodes.
variable will reduce the uncertainty about the othe Statistical tests (such ashi-square test and mutual
other words, it measures the amount of informatiat information) have been used to identify these i@hat
variable Y provides with respect to variable X, ethi and thus build a simpler graphic structure for the
can be obtained through the function values ofoggtr  network. The proposed algorithm is divided basjcall

and conditional entropy, according to Equation k-5 into two stages: first the relevant variables aleced
and in sequence, while using score metrics, thghizal
MI(A;B) =ENT(A) —-ENT(A | B) (5) structure of the network is constructed.
The algorithm Tree Augmented Naive Bayes (TAN)
in which: proposes changes to the naive Bayes classifiersimg u
less restrictive conditional independence assumgtio
ENT(A) =~ P(a)log, P(a (5a) than those used in the original naive classifienrder to

capture correlations among network variables. \téegia
subsets are constructed by using the concept okdwar

And: blanket and only variables in the Markov blanke¢ ar
dependent on output class, that is, there is aeproof

ENT(A|B)= ,P(b)ENT(A|B) (5b)  selecting variables (and discarding others). Ineprib
justify its proposed change in the naive network

1.3. Chi-Square Testy) structure, the study shows that in some casesimerta

assumptions of independence by the naive clasgiligr

The chi-square %) test is used to verify the excessively penalize the output class probabilitiien
association between two qualitative (categorical) considering unlikely observations. The proposed
variables, A and B, based on a sample of obsenatio algorithm TAN allows that each variable has one enor
arranged in a contingency table with R rows and Cvariable as parent, beyond the output class. Fer th
columns (R, G 2) corresponding to categories A and B, construction of dependencies among variables, the
respectively. The null hypothesis {H states algorithm uses the mutual information function
independence between categories of A and B, whéde t (Friedmanret al., 1997).
alternative hypothesis ¢ points to an association In the study of (Zhang, 2004), a new explanation is
between A and B (Barbett al., 2004). The distancg proposed on the excellent performance of the naive
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2011), we used a feature selection process usingtth

local dependence, which is basically the dependencysquare test combined with calculation of weightsthe

between a node and its parents. In order to medkare

remaining variables (after feature selection precasth

local dependence of a node in each class, the ratidhe use of mutual information function.

between the conditional probability of the nodegegi its
parents and the conditional probability of the node
without parents is utilized. This reflects how sigty
parents affect the node in each class. The studwsh
that essentially the distribution of dependencwt tis,

the uniform or irregular manner in which the local
dependence of a node is distributed in each clads a
how local dependencies on all nodes work either
consistently (by supporting a certain classificaiemr
inconsistently (by canceling one another), plagsuzial
role in the classification task. Thus, the studitest that

no matter how strong dependencies between variable
are, the naive Bayes classifier can still be ogtiiha
dependencies are distributed evenly in classesif or
dependencies cancel each other.

The overall goal of the research by (Rish, 20013 wa
to understand data characteristics that affecbpmnce
of the naive Bayes classifier. The approach makest
Monte Carlo simulations, which allow a systematicly
of classification accuracy for several classesaaflomly
generated problems. This approach also allows IBypas
the data amount limiting problem, as it assumelsatze
infinite amount of data (exact knowledge of data
distribution).

Huang and Li (2011) focused on studying a method
that allowed utilizing the naive Bayes classifieithma
small set of samples, without losing accuracy. Stouely
claims that the original use of the naive Bayessdifeer
in small samples of data does not provide good

performance. Based on this statement, they have

proposed utilizing the Poisson distribution for ttex
classification.
In the study by (Leeet al., 2011) weights are

assigned to the variables of a dataset through thée

Kullback-Leibler measure. The authors believe that
certain variables carry more information than oghend
thus assigning weights to them, a more accuratdtries
the classification task is obtained.

It is easy to see that attributes with boundaryesl
can compromise the classification task, since cimang
the category of a variable and is in turn, can gbathe
value of the output variable. Thus, this study aine
identify and correct the characteristics of trajndata set
that could affect the classification process, ilatien to

the assignment of categories to the values of the

variables of training cases. Moreover, as in some
previous works (Cheng and Greiner, 1999; letal.,
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2. MATERIALS AND METHODS

2.1. Bayesian Networks Assessment

In order to compare the proposed method in thikwor
with the traditional approach of Bayesian networks
(naive and hierarchical), first, the data set (irag and
testing) was submitted to two networks in theitiahi
settings, i.e., the networks naive and hierarchical
(modeled by the expert). The results were savedtsam
we applied a process of selection variables ugiagchi-
§quare test to verify the association between pafirs
variables (each variable in the data set combinéutive
output variable), so restricting the number of mode
variables used to build the graphical structuretha
network. To control the influence of each variaiig¢he
posterior probability, we calculated weights ofiahles
using mutual information function and finally, tkewas
a adjustment in the process of categorization & th
variables in the data set. The steps of the prapose
method are described below.

The first step of the classification process, coed
as training phase of the network, consists in the
following steps:

Receiving the training data set as input

Calculating values of? test for all pairs of “father-
daughter” variables

Calculating values of entropy and conditional
entropy functions for all variables in the network.
Calculating mutual information function values for

all variables
Submit the data to the naive and hierarchical
networks

e ldentifying changes to improve network
performance

Steps in the final classification process, withraes
identified in the previous step in the processtided,
are listed below:

* Receiving the training data set as input

For each sample set of test data, calculating
posteriori probability values, using values generated
by mutual information function as weight, only for
variables selected by thétest

JCS
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( pvc ) _——— In the hierarchical Bayesian network all variables
‘ ( AFS ) listed are part of the networki@. 4).
¥ Based on the estimated probabilities in accordance

with relative frequencies, the domain expert haderan
adjustment in the probability distributions of each

- ( RM) variable. According to medical knowledge regarding
( Pca Y& ) N _\ diagnosis of metabolic risk for children and adotags,
) - ( PPA ) this adjustment was necessary due to a shortage of

examples in the training sample and that both nekdsvo
would adequately reflect the relation between \deis

2.3. Methods

In the second stage of testing, values obtaindtieén
: e— y2 test and by the mutual information function haeen
@7{ RCV }—b( PPA ) used once more in order to classify the test deitaOn a
I first moment, the values of mutual information betw

dependent variables have been calculated, accotding
graphical models of both networks. The resultinyes
( RM ) were used to adjust the interference of each Mariab

H )

Fig. 3. Naive Bayesian network

the classification. Equation (8) presents a nevmfda
for calculating probabilities of the naive netwods the
work of Leeet al. (2011):

d=argmax,. 0 P(c)LIﬂDd P@a |&f (8)
( pca ) Which:
f——r d = Complete set of variables of a given test

Output class
j-th value of the i-th variable
w = Variable weight (mutual information)

Fig. 4. Hierarchical Bayesian network

» O
I

Table 1.List of variables used on both network models

Normalization constant

=]
1

Variable # of classes

Blood Pressure (PPA)
Abdominal circumference (PCA)

2 and in in hierarchical network calculation is done
Weekly Physical Activity (AFS) 3
5
3
3

according to the new formula, introduced by thisrkyo

Body Mass Index (PIMC) as can be seen in Equation (9):

Parent’'s Body Mass Index (H)

Cardiac Risk (RCV)

Nutritional Risk (RN) 3
Metabolic Risk (RM) 3 Which:

P(C |AB)=0P(C ), P(AIDY P(BI|PY (P [C (9)

C = Output node
» Adjusting for class examples with threshold values. A,B = Child nodes
* Resubmit the data set to the naive and hierarchicap = Intermediate node

networks i = i-th output class
. ) i =j-thclass of intermediate value
2.2. Modeling of Bayesian Network w = Variable weight (mutual information)

In the creation of networks, cardiovascular riskl an ¢ = Normalization constant

nutritional risk variables were not part of the veai 2 4 Data

network, since they are intermediate nodes in tygeBian o

network. The other variables in the naive netwark a Data used in this study was collected from patients
connected directly to the output nodfg( 3). seen in the Nutrition outpatient clinic of the Uaigity
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Hospital, at Federal University of Santa CatarBizil, « On the naive network, in 4 out of 5 disagreeing
from November 2010 to November 2011. Variables cases, the values in one of the variables wererath
selected for the creation of networks are related t close to the upper class threshold value (assuming
anthropometric data of physical activity, blood gmare the value of the upper class, examples came to be
and patient nutritional status assessment. correctly classified)

The sample consisted of 120 children and adolescente  On the hierarchical network, the three cases in
aged 5 to 17 years. Data collection complied wita t which misclassifications occurred also had
guidelines for research involving human particigant threshold values
established by Resolution No. 196/96 of the Nafiona
Health Council (Brazil) (Mayer, 2012). About 100sea Thus, it was possible to observe that in cases avher

were used to estimawpriori probabi"ties and Other 20 there is presence Of thresho|d Va'ues in the immES’
cases_for testingTable 1 lists the variables used in he classification obtained by Bayesian networks is
Bayesian networks. , _ . affected, causing divergence in relation to the
All variables are measured on an ordinal quali@tiv ¢assification performed through gold standard.
Ievs{}r;[hat L:,.,l_thew;:rllaszs?s ?fia_ranked amoné; 't(;‘f?t th This issue is present when there are nodes present
miniml?nrl 35&”& efxec(:‘ dlfrles Lizzmgenreguer at e ihat represent ordinal qualitative variables. Insth
. . pected Irequency Is gre _cpuae situation, the class division criterion is a factbat also
to five (Filho, 2008). This criterion is not sated in the affects the response generated by networks
data set used, on the variables of Weekly Physical After subrﬁitting gsample d)::ua 0 tésting both

Activity (AFS), Blood Pressure (PPA) and Parentifat ) N
Anthropometric (H) for naive network variables and network_s, thq_test was calcula_ted (see values for naive
Weekly Physical Activity (AFS) and Blood Pressure @nd hierarchical networks inTable 3 and 4
(PPA) for the hierarchical network. Thus, this respectively) adopting a significance level of 5%&di to

mutual information function valueSéble 5 and 6for
3. RESULTS AND DISCUSSION naive and hierarchical networks, respectively). The

indicators generated by these metrics have beeahinse

In order to display the summary of test resultg th the analysis of dependence relations among vasable
method known as confusion matrix (or classification
matrix) has been chosen. The method is in essarit® q Table 2. Classification matrix (confusion matrix) for the -patients
simple, consisting primarily of a square matrix ttha sample
contains all possible classes, both in rows and inGold Naive network Hierarchical network
columns. The matrix columns receive response values
generated by the network and lines receive theubutp

standard Low Moderate Elevated Low Moderate BEé&va

. 4 1 0 5 0 0

class values according to gold standard (Marslandoderate 0 5 0 0 5 0

2009). Elevated 0 4 6 0 3 7
Validation of Bayesian networks was performed by Error Rate 25% 15%

comparing diagnoses made by specialist physicigols (
standard) with the results of probabilities presdnby Table 3.Values ofy® for the naive network

both networks. Naive networky® (5% significance level)
Table 2 presents test results for a sample of 20
patients, in which node classification classeslabeled ~ Statistics PIMC ~ PCA  H PPA  AFS
“Low”, “Moderate” and “Elevated”. Xz 58,61 44,49 15,82 12,53 6,77
On the naive network, five cases had differentXc 15,51 5,99 949 9.49 9.49

classification from that provided by the special3h the

hierarchical network, three cases have shown déverg.  Table 4.Values ofy’ for the hierarchical network

The remaining cases have been correctly classified. Hierarchical network x> (5% significance level)
When analyzing possible reasons that have

contributed to differences between the classificeti Statistcs RCV RN PIMC PCA H  PPA  AFS

provided by the network and the gold standard, dsw Xz 18,24 71,04 130,24 61,59 23,77 116,18 28,75
noted that: Yc 949 949 1551 599 949 9490 9,49
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They2 test was used on a variable selection processfunction and variable selection through tf#etest, only
to verify if any variable should be disregardedtlie one case remained with erroneous classification. By
calculation of probabilities. The mutual informatio examining the data in more detail, it is possibletice
function was used to weight the calculation af that the likely issue with this case is that theighe

posteriori probability. assigned to the PCA variable when using mutual
. information function, because in this example, thithe
3.1. Naive Network only column with a value which contributes to thejput

class indicated by the network. Test results wihb t

After applying the new test on the naive network, naive network are listed Grable 7

utilizing mutual information function values, 4 eas
have continued to present divergent classes. Ornibeof Table 5. Mutual Information function values for the naive

cases that had been classified correctly in tret fast network

started presenting error and one error on thetésgttwas Mutual information-naive network

correctly classified. In the next steg, test results were

used in order to eliminate network variables thtoeg M PIMC PCA H PPA AFS  Total

variable selection process. According to tjje test ~ Value 3305 4164 3530 2054 9,15 139,66
% 23,66 29,81 25,27 14,70 6,55 100,00

results, the variable AFS is independent of theatbe
RM according to the naive network model. In ordeuge
this information, the AFS variable was disregarded
calculations. As a result, 2 cases have ceaseéntias
error and another case that had been correctlyifidasin
the previous test, was now classified incorrectly. IM RCV RN PIMC PCA H PPA AFS Total
After adjusting threshold data in test cases amagus Value 28,60 38,77 36,54 41,29 3567 18,78 0,04 699,

both calculation approaches, value of mutual infstion ~ % 14,32 19,42 18,30 2068 17,86 941 002 100,00

Table 6. Mutual Information function values for the
hierarchical network
Mutual information-hierarchical network

Table 7.Final results for the naive network testing-diergcases (B = Low, M = Moderate and E = Elevated)

Normal calculation IM IM angf IM, % and threshold values
Standard
Gold RM B M E RM B M E RM B M E RM B M E
Low M 4180 5790 0,320 L 58,49 31,34 10,17 L 64,26,24 8,90 L 64,86 26,24 8,90

Elevated M 0,000 9350 6,490 M 5,180 60,96 33,86 8,040 55,62 39,34 E 4,940 37,88 57,19

Elevated M 0,000 9350 6,490 M 5,180 60,96 33,86 8,040 55,62 39,34 E 4,940 37,88 57,19

Elevated E 0,010 16,30 83,70 M 8,500 51,23 40,26 WM750 49,51 42,74 E 3,220 4792 48,86

Elevated M 0,000 76,30 23,70 M 4,270 53,22 4250 B,980 46,61 49,41 E 3,620 29,54 66,84

Low L 999 0,000 0,080 L 4103 3757 21,39 M 352405 2081 M 35,14 44,05 2081
E

Elevated M 0,000 80,50 19,50 M 3,550 55,16 41,29 B,220 47,92 48,86 3,220 47,92 48,86

Table 8.Final results for the hierarchical network testitigergent cases (B = Low, M = Moderate and E =vaied)

Normal calculation IM IMy? and threshold values
Gold
standard RM B M E RM B M E RM B M E
Elevated M 8,77 58,70 32,60 M 0,22 0,41 0,36 E 0,21 0,31 0,47
Elevated M 8,77 58,70 32,60 M 0,22 0,41 0,36 E 0,21 0,31 0,47
Elevated M 3,59 49,10 47,30 El 0,21 0,38 0,41 E 40,1 0,33 0,52

Table 9. Classification matrix (confusion matrix) for th@-patients sample, after adjustments

Naive network Hierarchical network
Gold
standard Low Moderate Elevated Low Moderate Elelate
Low 4 1 0 5 0 0
Moderate 0 5 0 0 5 0
Elevated 0 0 10 0 0 10
Error Rate 5% 0%
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3.2. Hierarchical Network probability  calculation  for certain  variables.

On the second test, while using values generated b)&\leve.rt.heless, one of thg cases in the test. wasreully
the mutual information function performed in the cla§3|f|ed due to_ the weight of a single varialli other
hierarchical networkTable 8), 2 cases have continued Variable values in the example favored the corcéass,
to present divergent classes. When adjusting thtésh but the elevated weight assigned to variable PIMC
values, all cases have been correctly classifiet this altered the output class to an incorrect valuefutore
test, weights generated by the mutual informationresearch, this aspect will require revision.
function have been applied only on the leaf vadabl In order to automate the task of adjusting clasdes
that is, nodes NB and RCV did not have their examples with threshold data, the use of fuzzyclogi
probabilities altered, since weights had alreadgnbe (zZadeh, 1965) is suggested to allow more flexipilit

applied to the children variables of these nodes. ~ treating class division within model variables.

In the case of the hierarchical network, {adest did Thus, it is clear that the real gain of this study
not suggest eliminating variables, which explaihe t rej|ated to improving the classification processt trs,
absence of the last columnTable 8. the reduction in error rates. In the naive Bayesian
3.3. Final Results network the error rate dropped from 25% to 5%,

considering the initial results of the classificati

The final results for testing both networks can be process. In the hierarchical network, there wasonbt a
seen inTable 9, which shows the classification matrix 15% reduction in error rate, but it has also comeero.

and where there is clear reduction in the err@ fatthe  Therefore, it is considered that, with the impletation
classification process in both networks. of the proposed changes, there was considerable
improvement in the classification process.
4. CONCLUSION
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