Journal of Computer Science 7 (12): 1793-1797, 2011
ISSN 1549-3636
© 2011 Science Publications

Balanced Scheduling of Independent
File-Sharing Tasksin Heterogenous Environment

R.K. Ponsy, Sathia Bhama and S. Thamarai Selvi
Department of Computer Technology, Anna Univerditgia

Abstract: Problem statement: To examine the strategies for scheduling of inddpat file-sharing
tasks in a heterogeneous environment and the cbidepad balancingApproach: We propose
hypergraph partitioning based strategy for the dualieg of non-critical jobs. This is done by
scheduling the tasks that share tasks among thehe tseame processor. The tasks thus scheduled are
employed to a load balancing scheme for balandiegldad on the processors by considering the
average load on all processoResults: This strategy reduces the input output overheausng the
tasks thus reducing the end-point contentiGonclusion: Thus the batch execution time on the
processors is reduced.

Key words: Hypergraph partitioning, partitioning strategygrsficant performance, output overheads
among, approaches inherently, homogeneous platfosgientific computing, satisfied
assign, virtual organization, second stage

INTRODUCTION Aykanat, 2006). Their work assumes a central master
o]) o file server. They do scheduling of file sharingkiasn

The Grid is emerging as a wide-scale, distributeqnree phases by using hypergraph partitioning ntetho
computing infrastructure that promises to support Gierschet al. (2006; Fujimoto and Hagihara, 2004:
resource sharing and coordinated problem solving ifkarypis and Kumar, 1998; Catalyurek al., 2007)
dynamiC, multi-institutional Virtual OrganizatiOIGrid proposed several different heuristics which redime
scheduling involves three main phases: resourc@me complexity while preserving the quality of
discovery, which generates a list of potential ueses; schedules. This scheduling decision is based on the
information gathering about those resources angreedy choices that depend on the momentary
selection of a best set; and job execution, whiclcompletion time of tasks. Iterative improvement
includes file staging and cleanup. heuristics have been widely used for scientific

In this study, we address the problem of schedulin computing Vydyanatharet al. (2006) communities
the tasks in a heterogeneous environment. We peopodecause of their effectiveness with good-qualigulis
a novel, hypergraph based approach along with loag@nd efficiency with short runtimes.
balancing. The main advantage of the hypergraph
model is that a hypergraph can model asymmetric MATERIALSAND METHOD
dependencies. The approach in this study formutates In this study we compare the performance of
sharing of files among tasks as a hypergraph anglypergraph algorithm with minmin algorithm for tkeos

employs a strategy of two stages for schedulingsits tasks that share files between them.
and file transfers. In the first stage, tasks ateeduled

to the processors using hypergraph partitioninghoet ~ Proposed architecture: The overall architecture of the
In the second stage, load balancing is done s as toad balanced scheduler is shown in Fig. 1.

balance the load on the processors. L)
Hypergraph partitioning: Here we describe the

Related work: Earlier approaches inherently looked at hypergraph partitioning strategy and we propose an
homogeneous platforms. Our current work targety tru algorithm for the task to processor mapping whetuces
heterogeneous environments and uses efficient mgppi the replication of files across the processors. Jteps

of tasks onto heterogeneous compute clusters. Kaga involved in the partitioning and the calculation of
Aykanat (2006) have concurrently developed anexecution time, the algorithm for mapping the tatks
iterative improvement based heuristic for schedulin processor and rescheduling of the tasks to bathrdead
tasks sharing files on heterogeneous systems (Haga among the processors are explained below.

Corresponding Author: Ponsy.R.K, Department of Computer Technology Adnéaversity
1793

J. Computer Sci., 7 (12): 1793-1797, 2011

Hypergraph partitioning strategy: The hypergraph The hypergraph partitioning method involves the
partitioning strategy reduces the communicationmapping of tasks to the processor based on the file
volume. It is influenced by the cost of transfegrithe sharing between tasks. The communication volume is
files required for the particular task to executgal ~reduced in this process. If overlapping of filesoag

bandwidth, remote bandwidth between the server aane tasks are more than the tasks are mapped to the
Same processor.

client, time taken to execute a program of size one Consider six tasks that have to be scheduleddo tw
byte (compute byte) and the degree of overlag,ocessors, P1 and P2. The file requirement ofatbies
between the tasks. . _ _ is shown in Fig. 2.a. Taskl is scheduled to P1. It
The hyper graph H = (V, N) is defined with V, the requires files C, E and G. Now the Task3 is scheiul
set of vertices and N the set of edges. The cost ab the same processor P1 since two of its reqdites
transferring a file F, Transfefor a task T is Transfer C and E are already available in P1. Task5 is also
(one_byte)= (Praky; wsfRemoteBW)+(1-Profy; as)™: scheduled to P1 since all the required files Ape &

- - is already available in P1.
(1-Probnapped_io_the_same_ndhRemoteBW Task 2 and Task 4 are scheduled to P2 based on
Where: the policy gbove. Now we have to schedule_ 'I_'ask6.
RemoteBW — the I/O bandwidth between |2aské requires the files A, B and D. Now the fildisA

the storage node and the avalla_\ble_ln P1 but files B and D are availablePip.
compute node Considering the degree of overlap and the traresfst,

Probirst task = The probability that task T Taské is scheduled to P2.
will be the first task 10 Tag to processor mapping algorithm:
execute in the group
Probnapped_to_the_same_nose The probability that T Stepl: Calculate the execution time of each ofdhle
executes on a node where Step 2: Order the task according to the executioe t
fle F has already been with the task having least execution time at the
transferred head of the queue
Step 3: Assign the first task to a processor sbttia
Here we assume uniform probability distribution. task suffers minimum, for example P1.
Hence we have: Step 4. Transfer the files needed for the task to
execute
Prolys wsie 1/5 Step 5: Take the next task in the queue and agsign
- the processor P1 if the files that are present in
where, ssize of hyper-edge: the processor P1 are also needed by the next
task satisfying the condition, no. of files(that
are yet to be transferred) needed by the task <=
ceil (no. of files needed for the task
execution/2)
Step 6: Transfer the other files needed for task
execution
Step 7: If the above condition is not satisfiedgsd
to another processor such that the task will
least suffer.
TimeExecution = Yeri filesize(f) * (Transfey + 1/ Step 8: Repeat the steps 5, 6 and 7 until all alskst
LocalBW + Computgye) + Queue_waiting_time has been assigned to the processor.

Pro bnappedftofthefsameﬁnona/ 3

where s is the number of compute nodes.

With the assumption that computation time is
linear with the file size, we calculate the estietht
execution time as:

where, LocalBW is the /O bandwidth between theload balancing: The files are thus scheduled by the
local disk to the compute node and Comppiés the — method of hyper graph partitioning, are checkedtier
compute cost of one byte. Here TimeExecuytisrthe ~ constraint of load balancing. The processor’s itlial
estimated execution time. queue is checked along with the load on the process

So by assigning file sizes as hyper-edge costs, thConsider the case of two processor pl, p2 withstékk
proposed method reduces the communication cost4. In case of all the tasks requiring the saneeibuld

An example of the batch of tasks and itsbe scheduled by hyper graph partitioning to theesam
hypergraph is illustrated in the Fig. 2. processor to reduce the communication time.

1794

J. Computer <ci., 7 (12):

1793-1797, 2011

Information agenty Storage manager Task scheduler Toad Falanass
Database connecton - z
management C‘ﬁgm Algorithm
DProcess mformation : / ~ =
?etcher - 5 L1 Task to processor
5 Dvnatnic ™ Data mapping interface *|_ Load checker
Renmtelband\s'ldth = updal:iﬂn__ -~ Storage
estimator =] tj U U
= 8 Rescheduler
P 0 A
information fetcher 5 I/

| Query analyser |

‘{ Execution time calculation |

i
L
i
]
[
1
[
1

Fig. 1: Overall architecture of the system

Storage of nodes

But the queue waiting time would be large and load
one processor will be high. Hence the load balancer .,
checks with the constraint and indicates reschedfle) *

Storage 1
the imbalanced load on the processor (Dhakall., CE)

[Task;l_) | L gt
2007). Then two of the four tasks could be scheatiule P % 5
to other processor. Here we could finish the work [Tasks2)’*r:_ T _ ,,_a___;.:f,*———""
faster. And comparing to the queue waiting time of R i
tasks with the transfer time of files, we reschedine Tasks3) _ =t IS Sffa;’f
tasks if it is reasonable. ol "7 S
Also if the processor has excess load, then we [Ta4) 7 20 0 L~ -

could transfer a group of tasks with similar file _ -~ _

(Tasks a) ya
| Tasksé)

requirements to another processor. Each of the
processor loads is compared with the average Iball o
other processors and balancing is maintained arathng
the processor’s load (Dhaletlal., 2007).

RESULTSAND DISCUSSION

@)

We now present an experimental evaluation of the . ' 5y ~ ()
proposed hypergraph strategy along with MinMin .~ < ~— ' _
algorithm. For experimental purpose we considet tha Lo\) ‘ ' n / s
all the files that are needed for the task exeautt \ - ¥ | _ ! |/ @&
present in the server initially. The server has thent 1')' @ / NI
processors connected to it. The client submitstakk
to the server and the server schedules the taskg us (b)
hypergraph partitioning method so as to reduce the
communication cost. The server contains the file8 A
C,D,E,FandG.

5B)

Fig. 2: Hypsergraph representatior of a samplehbatc
tasks. The numbers indicate tasks. The letters

We have consider ed two cases here: are files required by the tasks

Case 1. The tasks submitted by the users share files
between them. The number of files shared is maaa th
half the number of files required for the task xeeute.

For the case 2 we consider the memory available
and load on the processor to schedule the task.
We now compare the degree of overlap with number of
Case 2 The tasks submitted by the users share ﬁleéimes a file is transferred from_server to clidrigure 2
between them, but the number of files shared is IesShOWS the result of comparison for the hypergraph
than the number of files required for the taskxecaite. Partitioning method. Since in hypergraph partitrani
For the case 1 we use the hypergraph partitioninge tasks that have high degree of overlap argeedi
method to reduce the communication between thé0 the same processor, the number of times a ditett
compute nodes. be replicated is minimized.

1795

J. Computer Sci., 7 (12): 1793-1797, 2011

= Files shared = Number of time a files replicated

.
6
5
4
3
1
o]
Low Medium High
Degree of overlap
Fig. 3: Comparison of degree of overlap and nunalber

times a file is transferred from server to client
using hypergraph partitioning method

Table 1: The tasks share one file between them

Task name Files needed

1 A B,C

2 C,D,E

3 ,F, G

Table 2: The tasks share two files between them

Task name Files needed

1 A CF

2 A C E

3 C,EF

Table 3: The tasks share all the files that areuired for the
execution of each of the tasks

Task name Files needed

1 A B,C,D,EFG

2 A B,C,D,EFG

3 A B,C,D,EFG

In hypergraph partitioning, the file replication
decreases with the increase in overlap. The number
times a file has to be replicated
partitioning for lower degree of overlap is sametfzet
in MinMin algorithm. To explain this, consider the
values in Table 1. From this table it is clear tfasks 1,

2 and 3 share a file between them. In this caseeif
schedule all the three tasks to the same procéissor
for each of task we have to transfer two fileseaahl

In order to improve the performance we can
schedule those tasks whose degree of overlap id©yow
using the MinMin algorithm. This is because it wabul
give a better throughput.

Figure 3 shows the result of comparison between
the degree of overlap and number of times files is

replicated for minmin algorithm.

For MinMin algorithm the number of times a file is
replicated depends on the processor to which tksta
that share files between them are scheduled.

in hypergraph

Consider the values in Table 3 the tasks shardeg fi
between them. By using MinMin algorithm, if tasks 1
and 2 are assigned to one processor and task 3 is
assigned to the other processor, then all the seven
files have to be replicated. Thus the number oEEm

a file is replicated depends on the processor tichvh
the tasks are scheduled.

CONCLUSION

The study developed a strategy for scheduling a
collection of data intensive tasks using hypergraph
partitioning method. Then load balancing is done to
balance the load on the processors. The performance
results shows that our strategy achieve significant
performance over MinMin. Our future work would
involve scheduling of attached jobs and integrathrg
scheduling with that of hypergraph partitioning huet.
Attached jobs are those which explicitly specifye th
processor where they want to run.

REFERENCES

Catalyurek, U.V., E.G. Boman, K.D. Devine, D.
Bozdag and R. Heaphst al., 2007. Hypergraph-

based dynamic load balancing for adaptive
scientific computations. Proceedings of the
International Parallel Distributed Processing

Symposium, Mar. 26-30, IEEE Xplore Press, Long
Beach, CA, pp: 1-11. DOI:
10.1109/IPDPS.2007.370258

Dhakal, S., M.M. Hayat, J.E. Pezoa, C. Yang and.D.A
Bader, 2007. Dynamic load balancing in
distributed systems in the presence of delays: a
regeneration-theory approach. Trans. Parallel
Distribut., 18: 485-497. Pp:
10.1109/TPDS.2007.1009

Fujimoto, N. and K. Hagihara, 2004. A comparison
among grid scheduling algorithms for independent
coarse-grained tasks. Proceedings of the
International Symposium on Application and
Internet Workshop, Jan. 26-30, IEEE Xplore Press,
Japan, pp: 674-680. DOl:
10.1109/SAINTW.2004.1268711

Giersch, A., Y. Robert and F. Viven, 2006. Schedyli

tasks sharing files on heterogeneous master-slave

platforms. 52: 88-104. DOI:

doi:10.1016/j.sysarc.2004.10.008

Karypis, G. and V. Kumar, 1998. Multilevelk-way
partitioning scheme for irregular graphs. J. Parall
Distributed Comput.,, 48: 96-129. DOIL:
10.1006/jpdc.1997.1404

1796

J. Computer Sci., 7 (12): 1793-1797, 2011

Kaya, K. and C. Aykanat, 2006. lterative-improvettaen Vydyanathan, N., G. Khanna, U. Catalyurek, T. Kurc
based heuristics for adaptive scheduling of tasks

heterogeneous master-slave
environments. |IEEE Transact. Parallel Distributed
Syst., 17: 883-896. DOI: 10.1109/TPDS.2006.105

Khanna, G., N. Vydyanathan, T. Kurc, U. Catalyurek

sharing files on

and P. Wyckoff et al.,

2005. A hypergraph

partitioning based approach for scheduling of tasks
with batch-shared 1/0. Proceedings of the Fifth

IEEE International

Computing and

the Grid,

Symposium on

(CCG'05),

Cluster
IEEE

Computer Society Washington, DC., USA., pp:

792-799.

1797

and P. Sadayappan, 2006. Scheduling of tasks with
batch-shared 1/0 on heterogeneous systems.
Proceedings of the 20th International Conference
on Parallel and Distributed Processing, (PDP’ 06),
IEEE Computer Society, Washington, DC, USA,,
pp: 159-159.

