
Journal of Computer Science 7 (12): 1793-1797, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Ponsy.R.K, Department of Computer Technology Anna University
1793

Balanced Scheduling of Independent

File-Sharing Tasks in Heterogenous Environment

R.K. Ponsy, Sathia Bhama and S. Thamarai Selvi
Department of Computer Technology, Anna University, India

Abstract: Problem statement: To examine the strategies for scheduling of independent file-sharing
tasks in a heterogeneous environment and the concept of load balancing. Approach: We propose
hypergraph partitioning based strategy for the scheduling of non-critical jobs. This is done by
scheduling the tasks that share tasks among them to the same processor. The tasks thus scheduled are
employed to a load balancing scheme for balancing the load on the processors by considering the
average load on all processors. Results: This strategy reduces the input output overheads among the
tasks thus reducing the end-point contention. Conclusion: Thus the batch execution time on the
processors is reduced.

Key words: Hypergraph partitioning, partitioning strategy, significant performance, output overheads

among, approaches inherently, homogeneous platforms, scientific computing, satisfied
assign, virtual organization, second stage

INTRODUCTION

 The Grid is emerging as a wide-scale, distributed
computing infrastructure that promises to support
resource sharing and coordinated problem solving in
dynamic, multi-institutional Virtual Organization. Grid
scheduling involves three main phases: resource
discovery, which generates a list of potential resources;
information gathering about those resources and
selection of a best set; and job execution, which
includes file staging and cleanup.
 In this study, we address the problem of scheduling
the tasks in a heterogeneous environment. We propose
a novel, hypergraph based approach along with load
balancing. The main advantage of the hypergraph
model is that a hypergraph can model asymmetric
dependencies. The approach in this study formulates the
sharing of files among tasks as a hypergraph and
employs a strategy of two stages for scheduling of tasks
and file transfers. In the first stage, tasks are scheduled
to the processors using hypergraph partitioning method.
In the second stage, load balancing is done so as to
balance the load on the processors.

Related work: Earlier approaches inherently looked at
homogeneous platforms. Our current work targets truly
heterogeneous environments and uses efficient mapping
of tasks onto heterogeneous compute clusters. Kaya and
Aykanat (2006) have concurrently developed an
iterative improvement based heuristic for scheduling
tasks sharing files on heterogeneous systems (Kaya and

Aykanat, 2006). Their work assumes a central master
file server. They do scheduling of file sharing tasks in
three phases by using hypergraph partitioning method.
 Giersch et al. (2006; Fujimoto and Hagihara, 2004;
Karypis and Kumar, 1998; Catalyurek et al., 2007)
proposed several different heuristics which reduce the
time complexity while preserving the quality of
schedules. This scheduling decision is based on the
greedy choices that depend on the momentary
completion time of tasks. Iterative improvement
heuristics have been widely used for scientific
computing Vydyanathan et al. (2006) communities
because of their effectiveness with good-quality results
and efficiency with short runtimes.

MATERIALS AND METHOD

 In this study we compare the performance of
hypergraph algorithm with minmin algorithm for those
tasks that share files between them.

Proposed architecture: The overall architecture of the
load balanced scheduler is shown in Fig. 1.

 Hypergraph partitioning: Here we describe the
hypergraph partitioning strategy and we propose an
algorithm for the task to processor mapping which reduces
the replication of files across the processors. The steps
involved in the partitioning and the calculation of
execution time, the algorithm for mapping the tasks to
processor and rescheduling of the tasks to balance the load
among the processors are explained below.

J. Computer Sci., 7 (12): 1793-1797, 2011

1794

Hypergraph partitioning strategy: The hypergraph
partitioning strategy reduces the communication
volume. It is influenced by the cost of transferring the
files required for the particular task to execute, local
bandwidth, remote bandwidth between the server and
client, time taken to execute a program of size one
byte (compute byte) and the degree of overlap
between the tasks.
 The hyper graph H = (V, N) is defined with V, the
set of vertices and N the set of edges. The cost of
transferring a file F, Transferj for a task T is Transferj

(one_byte)= (Probfirst_task/RemoteBW)+(1-Probfirst_task)*:

(1-Probmapped_to_the_same_node)/ RemoteBW

Where:
RemoteBW = the I/O bandwidth between

the storage node and the
compute node

Probfirst_task = The probability that task T
will be the first task to
execute in the group

Probmapped_to_the_same_node = The probability that T
executes on a node where
file F has already been
transferred

 Here we assume uniform probability distribution.
Hence we have:

 Probfirst_task= 1/sj

where, sj=size of hyper-edge:

Probmapped_to_the_same_node=1 / P

where, P is the number of compute nodes.
 With the assumption that computation time is
linear with the file size, we calculate the estimated
execution time as:

 TimeExecutioni = ∑fj€Fi filesize(fj) * (Transferj + 1/
LocalBW + Computebyte) + Queue_waiting_time

where, LocalBW is the I/O bandwidth between the
local disk to the compute node and Computebyte is the
compute cost of one byte. Here TimeExecutioni is the
estimated execution time.
 So by assigning file sizes as hyper-edge costs, the
proposed method reduces the communication cost.
 An example of the batch of tasks and its
hypergraph is illustrated in the Fig. 2.

 The hypergraph partitioning method involves the
mapping of tasks to the processor based on the file
sharing between tasks. The communication volume is
reduced in this process. If overlapping of files among
the tasks are more than the tasks are mapped to the
same processor.
 Consider six tasks that have to be scheduled to two
processors, P1 and P2. The file requirement of the tasks
is shown in Fig. 2.a. Task1 is scheduled to P1. It
requires files C, E and G. Now the Task3 is scheduled
to the same processor P1 since two of its required files
C and E are already available in P1. Task5 is also
scheduled to P1 since all the required files A, E and G
is already available in P1.
 Task 2 and Task 4 are scheduled to P2 based on
the policy above. Now we have to schedule Task6.
Task6 requires the files A, B and D. Now the file A is
available in P1 but files B and D are available in P2.
Considering the degree of overlap and the transfer cost,
Task6 is scheduled to P2.

Task to processor mapping algorithm:

Step1: Calculate the execution time of each of the task
Step 2: Order the task according to the execution time

with the task having least execution time at the
head of the queue

Step 3: Assign the first task to a processor so that the
task suffers minimum, for example P1.

Step 4: Transfer the files needed for the task to
execute

Step 5: Take the next task in the queue and assign it to
the processor P1 if the files that are present in
the processor P1 are also needed by the next
task satisfying the condition, no. of files(that
are yet to be transferred) needed by the task <=
ceil (no. of files needed for the task
execution/2)

Step 6: Transfer the other files needed for task
execution

Step 7: If the above condition is not satisfied assign it
to another processor such that the task will
least suffer.

Step 8: Repeat the steps 5, 6 and 7 until all the tasks
has been assigned to the processor.

Load balancing: The files are thus scheduled by the
method of hyper graph partitioning, are checked for the
constraint of load balancing. The processor’s individual
queue is checked along with the load on the processor.
Consider the case of two processor p1, p2 with tasks t1-
t4. In case of all the tasks requiring the same file would
be scheduled by hyper graph partitioning to the same
processor to reduce the communication time.

J. Computer Sci., 7 (12): 1793-1797, 2011

1795

Fig. 1: Overall architecture of the system

But the queue waiting time would be large and load on
one processor will be high. Hence the load balancer
checks with the constraint and indicates rescheduler of
the imbalanced load on the processor (Dhakal et al.,
2007). Then two of the four tasks could be scheduled
to other processor. Here we could finish the work
faster. And comparing to the queue waiting time of
tasks with the transfer time of files, we reschedule the
tasks if it is reasonable.
 Also if the processor has excess load, then we
could transfer a group of tasks with similar file
requirements to another processor. Each of the
processor loads is compared with the average load of all
other processors and balancing is maintained among all
the processor’s load (Dhakal et al., 2007).

RESULTS AND DISCUSSION

 We now present an experimental evaluation of the
proposed hypergraph strategy along with MinMin
algorithm. For experimental purpose we consider that
all the files that are needed for the task execution is
present in the server initially. The server has two client
processors connected to it. The client submits the task
to the server and the server schedules the tasks using
hypergraph partitioning method so as to reduce the
communication cost. The server contains the files A, B,
C, D, E, F and G.

We have considered two cases here:
Case 1: The tasks submitted by the users share files
between them. The number of files shared is more than
half the number of files required for the task to execute.

Case 2: The tasks submitted by the users share files
between them, but the number of files shared is less
than the number of files required for the task to execute.
For the case 1 we use the hypergraph partitioning
method to reduce the communication between the
compute nodes.

(a)

(b)

Fig. 2: Hypsergraph representatior of a sample batch of
tasks. The numbers indicate tasks. The letters
are files required by the tasks

 For the case 2 we consider the memory available
and load on the processor to schedule the task.
We now compare the degree of overlap with number of
times a file is transferred from server to client. Figure 2
shows the result of comparison for the hypergraph
partitioning method. Since in hypergraph partitioning
the tasks that have high degree of overlap are assigned
to the same processor, the number of times a file has to
be replicated is minimized.

J. Computer Sci., 7 (12): 1793-1797, 2011

1796

Fig. 3: Comparison of degree of overlap and number of
times a file is transferred from server to client
using hypergraph partitioning method

Table 1: The tasks share one file between them
Task name Files needed
1 A, B, C
2 C, D, E
3 E, F, G

Table 2: The tasks share two files between them
Task name Files needed
1 A, C, F
2 A, C, E
3 C, E, F

Table 3: The tasks share all the files that are required for the

execution of each of the tasks
Task name Files needed
1 A, B, C, D, E, F, G
2 A, B, C, D, E, F, G
3 A, B, C, D, E, F, G

 In hypergraph partitioning, the file replication
decreases with the increase in overlap. The number of
times a file has to be replicated in hypergraph
partitioning for lower degree of overlap is same as that
in MinMin algorithm. To explain this, consider the
values in Table 1. From this table it is clear that tasks 1,
2 and 3 share a file between them. In this case if we
schedule all the three tasks to the same processor then
for each of task we have to transfer two files table 2.
 In order to improve the performance we can
schedule those tasks whose degree of overlap is low by
using the MinMin algorithm. This is because it would
give a better throughput.
 Figure 3 shows the result of comparison between
the degree of overlap and number of times files is
replicated for minmin algorithm.
 For MinMin algorithm the number of times a file is
replicated depends on the processor to which the tasks
that share files between them are scheduled.

Consider the values in Table 3 the tasks share 7 files
between them. By using MinMin algorithm, if tasks 1
and 2 are assigned to one processor and task 3 is
assigned to the other processor, then all the seven
files have to be replicated. Thus the number of times
a file is replicated depends on the processor to which
the tasks are scheduled.

CONCLUSION

 The study developed a strategy for scheduling a
collection of data intensive tasks using hypergraph
partitioning method. Then load balancing is done to
balance the load on the processors. The performance
results shows that our strategy achieve significant
performance over MinMin. Our future work would
involve scheduling of attached jobs and integrating this
scheduling with that of hypergraph partitioning method.
Attached jobs are those which explicitly specify the
processor where they want to run.

REFERENCES

Catalyurek, U.V., E.G. Boman, K.D. Devine, D.

Bozdag and R. Heaphy et al., 2007. Hypergraph-
based dynamic load balancing for adaptive
scientific computations. Proceedings of the
International Parallel Distributed Processing
Symposium, Mar. 26-30, IEEE Xplore Press, Long
Beach, CA., pp: 1-11. DOI:
10.1109/IPDPS.2007.370258

Dhakal, S., M.M. Hayat, J.E. Pezoa, C. Yang and D.A.
Bader, 2007. Dynamic load balancing in
distributed systems in the presence of delays: a
regeneration-theory approach. Trans. Parallel
Distribut., 18: 485-497. Pp:
10.1109/TPDS.2007.1009

Fujimoto, N. and K. Hagihara, 2004. A comparison
among grid scheduling algorithms for independent
coarse-grained tasks. Proceedings of the
International Symposium on Application and
Internet Workshop, Jan. 26-30, IEEE Xplore Press,
Japan, pp: 674-680. DOI:
10.1109/SAINTW.2004.1268711

Giersch, A., Y. Robert and F. Viven, 2006. Scheduling
tasks sharing files on heterogeneous master-slave
platforms. 52: 88-104. DOI:
doi:10.1016/j.sysarc.2004.10.008

Karypis, G. and V. Kumar, 1998. Multilevelk-way
partitioning scheme for irregular graphs. J. Parallel
Distributed Comput., 48: 96-129. DOI:
10.1006/jpdc.1997.1404

J. Computer Sci., 7 (12): 1793-1797, 2011

1797

Kaya, K. and C. Aykanat, 2006. Iterative-improvement-
based heuristics for adaptive scheduling of tasks
sharing files on heterogeneous master-slave
environments. IEEE Transact. Parallel Distributed
Syst., 17: 883-896. DOI: 10.1109/TPDS.2006.105

Khanna, G., N. Vydyanathan, T. Kurc, U. Catalyurek
and P. Wyckoff et al., 2005. A hypergraph
partitioning based approach for scheduling of tasks
with batch-shared I/O. Proceedings of the Fifth
IEEE International Symposium on Cluster
Computing and the Grid, (CCG'05), IEEE
Computer Society Washington, DC., USA., pp:
792-799.

Vydyanathan, N., G. Khanna, U. Catalyurek, T. Kurc
and P. Sadayappan, 2006. Scheduling of tasks with
batch-shared I/O on heterogeneous systems.
Proceedings of the 20th International Conference
on Parallel and Distributed Processing, (PDP’ 06),
IEEE Computer Society, Washington, DC, USA.,
pp: 159-159.

