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Abstract: Problem statement: In this study we cope with the task of phone duration modeling for 
Greek emotional speech synthesis. Approach: Various well established machine learning techniques 
are applied for this purpose to an emotional speech database consisting of five archetypal emotions. 
The constructed phone duration prediction models are built on phonetic, morphosyntactic and prosodic 
features that can be extracted only from text. We employ model and regression trees, linear regression, 
lazy learning algorithms and meta-learning algorithms using regression trees as base classifiers, trained 
on a Modern Greek emotional database consisting of five emotional categories: anger, fear, joy, neutral 
and sadness. Results: Model trees based on the M5’ algorithm and meta-learning algorithms using as 
base classifier regression trees based on the M5’ algorithm proved to perform better. Conclusion: It 
was observed that the emotional categories of the speech database with the most uniform distribution 
of phone durations built the most accurate models. 
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INTRODUCTION 

 
 The most important goal in the field of synthetic 
speech technology is the improvement of the quality of 
synthesized speech. The quality of the synthetic speech 
lies upon two main characteristics: the naturalness of 
the synthetic voice and its intelligibility. The former 
conveys the similarity of the synthetic speech to the 
human voice (Klatt, 1987). The latter reflects the level 
of difficulty for the listener to understand the context of 
the synthetic speech (Klatt, 1987). Consequently, over 
the last years, there is an ongoing research concerning 
ways to implement several factors that affect human 
speech using various techniques for improving the 
quality of synthetic speech. 
 Modeling of prosody plays a very important role in 
the field of speech processing and more specific in 
speech synthesis. In human speech communication, 
prosody refers to the introduction of functions and 
aspects of speech which may not be encoded by 
grammar, such as emphasis, intent, attitude or 
emotional state. In speech, prosody is expressed by 
factors such as duration (timing and segmental length), 
fundamental frequency (pitch variations) and energy-
intensity (loudness) (Klatt, 1987; Mobius and Santen, 
1996). For building robust prosody models it is 
essential to study each of these prosody factors 

extensively. Consequently, in this study we focus on 
phone duration modeling, which is a major issue, since 
segmental duration affects the structure of utterances 
and therefore alters their naturalness and understanding. 
In this context, the production of highly natural 
synthetic speech is highly and directly correlated to the 
construction of proper phone duration models. In order 
to achieve this objective, the determination of the 
length of the phones and the specification of other 
features that affect it is crucial. 
 The phone duration modeling approaches are 
divided in two major categories: The rule-based (Klatt, 
1979) and the data-driven methods (Mobius  and 
Santen, 1996; Santen, 1992; Chen et al., 1998; Chien 
and Huang, 2003; Lazaridis et al., 2007). In the rule-
based methods manually produced rules, extracted from 
experimental studies on large sets of utterances or based 
on previous knowledge, are utilized for determining the 
duration of segments. Expert linguists are required for 
the extraction of these rules. One of the first and most 
well known attempts in the filed of rule-based 
segmental duration modeling is the one proposed by 
Klatt (1979). Similar models were developed in other 
languages such as French (Bartkova and Sorin, 1987), 
Swedish (Carison and Granstrom, 1988 and Greek 
(Epitropakis et al., 1993). The major drawback of the 
rule-based approaches is the difficulty to represent and 
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tune manually all the linguistic, phonetic and prosodic 
factors which influence the segmental duration in 
speech. Therefore, long-term devotion to this task 
becomes crucial and mandatory in order to collect all 
the appropriate (or even enough) rules (Klatt, 1987). 
Thus, the rule-based duration models are restricted to 
controlled experiments, where only a limited number of 
contextual factors are involved, in order to be able to 
deduce the interaction among these factors and extract 
these rules (Rao and Yegnanarayana, 2007). 
 Data-driven methods for the task of phone duration 
modeling were developed after the construction of large 
databases (Kominek and Black, 2003). Data-driven 
approaches are based either on statistical methods or 
Artificial Neural Network (ANN) based techniques that 
automatically produce phonetic rules and construct 
duration models from large speech corpora, overcoming 
in this way the problem of manual rules extraction. 
Their main advantage, in contrast to the rule-based 
techniques, is that this process does not depend on 
linguists. Over the last years various statistical methods 
have been applied in the phone duration modeling task 
such as, Linear Regression (LR) (Takeda et al., 1989), 
decisions tree-based models (Mobius  and Santen, 
1996), Sums-Of-Products (SOP) (Santen, 1992). 
Artificial  Neural  Networks  (ANN)  techniques 
(Chen et al., 1998), Bayesian models (Chien and 
Huang,  2003) and instance-based algorithms 
(Lazaridis et al., 2007) have also been introduced on 
the phone duration modeling task. Consequently the 
data-driven approaches offer us the ability to overcome 
the time consuming labor of the manual extraction of 
the rules which are needed in the rule-based 
approaches. 
 In phone duration modeling apart from 
investigating and evaluating different modeling 
techniques and in order to take better advantage of the 
effect of prosodic features in human speech analysis, it 
is essential to investigate not only the attributes of 
prosody of neutral speech, but also to examine prosodic 
features in the context of emotional speech. This 
research can lead to the incorporation of emotional 
effect on synthesized speech producing expressive 
synthetic speech. Several approaches introducing 
emotional speech synthesis have been presented over 
the years, such as formant synthesis, diphone 
concatenation and unit selection. In order for these 
approaches to synthesize certain emotions or to 
implement emotional prosody in TTS systems and 
generate more expressive speech, prosody modeling is 
employed (Jiang et al., 2005; Tesser et al., 2005; 
Inanoglu and Young, 2009). However, the task of 
segmental duration modeling of emotional speech is 

essential to be studied in more detail. The phone 
duration modeling task in the context of emotional 
speech, together with the analysis of other prosodic 
features, takes us one step ahead to the improvement of 
the quality of emotional speech synthesis and 
furthermore to more natural and expressive synthetic 
speech. 
 In the present research, several machine learning 
techniques are employed for the task of phone duration 
modeling on a Greek emotional speech database. The 
utilized techniques can be divided into four categories 
of data-driven machine learning, which are Decision 
Trees (DT) (Mitchell, 1997), Linear Regression (LR) 
(Witten and Frank, 2005), lazy-learning algorithms 
(Witten and Frank, 2005) and meta-learning algorithms 
(Witten and Frank, 2005). An emotional speech 
database has been utilized for the construction and 
evaluation of the phone duration models, which was 
manually annotated according to the Gr-ToBI system 
(Arvaniti and Baltazani, 2000). 
 Firstly, the machine learning algorithms which 
were applied on the phone duration modeling task are 
described. Next the emotional speech database that was 
used for building and evaluating the models along with 
the feature vector that was used and the performance 
estimation measures used for the evaluation of the 
models are described. Finally, we present and discuss 
the experimental results. This article ends with 
concluding remarks. 
 

MATERIALS AND METHODS 
 
Duration modeling algorithms: Several machine 
learning algorithms were applied for the task of phone 
duration modeling using features that can be extracted 
only from text. Those methods are classified under four 
categories, which are the following: decision trees, 
Linear Regression (LR), lazy learning algorithms and 
meta-learning algorithms.  
 
Decision trees: Decision trees are predictive models 
that create a mapping procedure between observations 
about an item and the conclusions about its target value 
(Mitchell, 1997). In these tree structures, leaves 
represent classifications and branches represent 
conjunctions of features that lead to these 
classifications. In our experimental evaluation trees 
using the M5’ algorithm (Wang and Witten, 1997) 
utilizing a model (M5p) and a regression (M5p-R) trees 
were built. 
 M5’ algorithm splits the input space progressively 
based on minimizing the intra-subset variation in the 
input values down to each branch. In each node, the 
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standard deviation of the output values for the instances 
reaching a node is taken as a measure of the error of 
this node and the expected reduction in error is 
calculated as a result of testing each attribute and all 
possible split values. This process is applied recursively 
to all the subsets (Wang and Witten, 1997). The M5’ 
can be used as a regression tree (M5p-R) or as a model 
tree (M5p). If a leave, in M5’ algorithm’s building 
process, is associated with an average output value of 
the instances sorted down to it, then the model is called 
regression tree (Quinlan, 1992). If the tree concludes in 
its leaves to more complex regression functions of the 
input variables, then the model is called model tree 
(Wang and Witten, 1997). 
 Furthermore the Reduced Error Pruning Trees 
(REPTrees) (Kaariainen and Malinen, 2004) were used. 
The REPTrees use a fast pruning algorithm to produce 
an optimal pruning of a given tree. The REP algorithm 
works in two phases: First the set of pruning examples 
S is classified using the given tree T to be pruned. 
Counters that keep track of the number of examples of 
each class passing through each node are updated 
simultaneously. In the second phase, which is a bottom-
up pruning phase, these parts of the tree that can be 
removed without increasing the error of the remaining 
hypothesis are pruned away. The pruning decisions are 
based on the node statistics calculated in the top-down 
classification phase. 
 
Linear regression: Linear Regression (LR) (Witten 
and Frank, 2005) algorithm is a classification and 
prediction algorithm that expresses the class variable as 
a linear combination of the attributes that are taken into 
account for constructing the prediction model. The 
training data are used to calculate the weights which 
will be subsequently applied on the feature set, in order 
to predict the class. Instead of using all the attributes, 
M5’ algorithm can be applied for feature selection 
(Wang and Witten, 1997). During feature selection the 
attribute with the smallest standardized coefficient is 
iteratively removed until no improvement is observed 
in the error estimation. The error estimation is given by 
the Akaike Information Criterion (AIC) (Akaike, 1974). 
 
Lazy learning algorithms: This category contains 
algorithms which defer processing of training data until 
a query needs to be answered. This usually involves 
storing the training data in memory and finding relevant 
data in the database to answer a particular query 
(Witten and Frank, 2005). 
 IBK is an instance based algorithm (Aha et al., 
1991), which belongs to the lazy learning algorithms, 
using the k-Nearest Neighbors algorithm (k-NN). At 

first it stores the training instances verbatim and then 
searches for the instance that most closely resembles 
the new instance. This is calculated through the use of a 
distance function-in our case the Euclidian distance. In 
order to locate the instance that is closer to the training 
instance, it searches among the k nearest neighbors of 
the test instance. Evaluating this method with different 
number of neighbors resulted in the adaptation of 12 
neighbors (k = 12) since it gave the best results. 
 Another lazy learning algorithm that we applied 
was the Locally Weighted Learning algorithm (LWL) 
(Atkeson et al., 1996). LWL is a general algorithm 
which assigns weights using an instance-based method-
in our case the Linear-NN, which is a nearest neighbor 
search algorithm-and builds a classifier from the 
weighted instances. The training instances which are 
located closer to the prediction point receive usually 
bigger weights. Furthermore, a distance function is also 
applied. The data weighting takes place either directly 
or through weighting an error criterion. Weighting the 
data can be viewed as replicating relevant instances and 
discarding the irrelevant ones. Moreover, a weighting 
function or kernel function is used to calculate a weight 
for a data point from the distance. In our case we used 
the tricube kernel function, while REPTrees were used 
as classifiers. 
 
Meta-learning algorithms: Meta-learning algorithms 
(Witten and Frank, 2005) are based on the use of 
classifiers converting them into more powerful learners. 
This happens by applying learning algorithms to meta-
data, which are data that provide information about 
other data managed within an application or 
environment.  
 Additive Regression (AR) (Stone, 1985) is a meta-
learning technique which enhances the performance of 
a regression algorithm. During the training procedure, 
the additive regression algorithm builds a regression 
tree, in each iteration, using the residuals of the 
previous tree as training data. The regression trees are 
combined together creating the final prediction 
function. The addition of the predictions of the next 
model to the ones of the previous automatically leads to 
a smaller error in the training data. In our experiments 
the additive regression algorithm was combined with 
M5p-R trees (AR-M5p-R) and REPTrees (AR-
REPTrees). In these two cases of additive regression 
meta-classification the shrinkage parameter, ν, 
indicating the learning rate, was set equal to 0.5 and the 
number of the regression trees, rt-num, was set equal to 
10 after some grid search experiments (ν = {0.1, 0.3, 
0.5, 0.7, 0.9}, rt-num = {5, 10, 15, 20}) on a randomly 
selected subset of the training set, representing the 40% 
of the size of the full training set. 
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 Moreover the Bagging algorithm (BG) (Breiman, 
1996) was used to model the phone duration. In the 
bagging algorithm, the dataset is split in multi subsets 
utilizing one regression tree for each one of them. Many 
of the original instances may be repeated in the 
resulting training set while other may be left out. The 
final prediction value is the average of the values 
predicted from each regression tree. In this case, we 
also applied M5p-R trees (BG-M5p-R) and REPTrees 
(BG-REPTrees) as base classifiers. The number of the 
regression trees, rt-num, was set equal to 10 after some 
grid search experiments (rt-num = {5, 10, 15, 20}) on 
the randomly selected subset of the training set, 
mentioned earlier. 
 
Database and feature set: A Modern Greek (MG) 
emotional speech database was used for the task of 
phone duration modeling of emotional speech. This 
database was developed in order to be linguistically and 
prosodically rich, so that it could be used for speech 
synthesis systems. The selected utterances were 
recorded expressing anger, fear, joy and sadness, as 
well as a neutral emotional state. The choice of these 
emotional states to be recorded was based on studies 
which argue that there are four basic or archetypal 
emotions (Oatley and Johnson-Laird, 1998).  
 
Database description: During the human speech 
production procedure the positional and contextual 
factors of a phone (place in syllable and word) play a 
very important role in the assessment of its duration 
(Mobius and Santen, 1996; Santen, 1992). The database 
was designed following this statement, so as for each 
phone to have multiple instances in various positions in 
different words (initial, medial, final) in the database. 
The database which was utilized for the experiments 
consisted of 62 utterances, which are pronounced 
several times with different emotional charge. The 
utterances of the database were extracted from 
passages, newspapers or were set up by a professional 
linguist. The length of the utterances was ranging from 
a single word, a phrase, small or large sentences or even 
a sequence of sentences of fluent speech. The context of 
all sentences was emotionally neutral, meaning that it 
did not convey any emotional charge through lexical, 
syntactical or semantic means. Moreover all the 
utterances were uttered separately in the five emotional 
styles. 
 The database, including all five emotional states, 
consisted of 4.150 words. The phone inventory which 
was used composed by 34 phones distributed in 22.045 
instances (15.667 voiced and 6.378 unvoiced phones). 
Furthermore, each vowel class included both stressed 

and unstressed cases of the corresponding vowel. The 
utterances were uttered by a professional, female 
actress, speaking Modern Greek. She was instructed to 
read all utterances with one emotion then change it and 
start over again for the next emotion, ensuring in this 
way that the speaker would not have to change her 
emotional state more than five times, expressing anger, 
fear, joy, sadness and neutral emotion respectively. In 
addition, she was instructed to express a ‘casual’ 
intensity of the chosen states avoiding any theatrical 
exaggeration. 
 The recording sessions were held in the anechoic 
chamber of a professional studio. The recorded speech 
was sampled directly at 44.1 kHz and then down 
sampled at the frequency of 16 kHz and a resolution of 
16 bit, for the needs of our experiments. 
 
Feature set: In the present research all phone duration 
models were build twice. On the first time all the 
models were built so as to model and predict directly 
the phone durations in milliseconds and the second time 
were trained based on the z-scores of the durations of 
the phones so as to model and predict the z-score for 
each phone. The z-score is a statistic quantity which 
indicates the number of standard deviations an 
observation is above or below the mean. The z-score 
allows comparison of observations from different 
normal distributions. After the prediction of z-score, the 
phone duration is calculated by the following formula: 
 

ph meanDur Dur (Zscore StdDev)= + ×  (1) 

 
 For constructing the models using the z-scores, we 
calculated the mean and standard deviations of duration 
from the entries. The z-score has often been used in 
duration modeling since it allows a certain degree of 
normalization over different phones. As it is reported in 
the literature, z-score is a better representation of the 
segmental durations on the task of duration modeling 
and usually gives better results (Black and Lenzo, 
2000). In order to investigate if this statement is applied 
on the emotional speech database, all the models were 
built modeling the phone durations both directly using 
the actual phone durations in milliseconds and also 
using the z-scores of the phone durations.  
 Various features can be extracted from text for the 
task of phone duration modeling (Mobius and Santen, 
1996; Santen, 1992). The feature set implemented for 
this task includes phonological, morphological, 
linguistic and syntactic attributes. For some features, 
we also applied a window around the investigated 
phone, in order to take advantage of the information 
conveyed by the neighboring phones. 
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 From each utterance we computed 33 features 
along with the contextual information concerning some 
of these features, described next: 
 
• Eight phonetic features: The phone type 

(vowel/consonant), the vowel length (short, long, 
diphthong or schwa), the vowel height (high, 
middle or low), the vowel frontness (front, middle 
or back), the rounded type (lip or rounding), the 
manner of production (consonant type), the place 
of articulation (labial, alveolar, palatal, labiodental, 
dental, velar, glottal), the consonant voicing. Along 
with the aforementioned features, the information 
concerning the two previous and the two next 
instances of these features was also used 

• Three segment-level features: The phone name 
with the information of the neighboring instances 
(previous, next), the position of the phone in the 
syllable and the onset-coda type (if the specific 
phone is before or after the vowel in the syllable) 

• Thirteen syllable-level features: The position type 
of the syllable (single, initial, middle or final) with 
the information of the neighboring instances 
(previous, next), the number of all the syllables, the 
number of the accented syllables and the number of 
the stressed syllables since the last and to the next 
phrase break, syllable’s onset-coda size (the 
number of phones before and after the vowel of the 
syllable) with the information of previous and next 
instances, the onset-coda type (if the consonant 
before and after the vowel in the syllable is voiced 
or unvoiced) with the information of previous and 
next instances, the position of the syllable in the 
word and the onset-coda consonant type (the 
manner of production of the consonant before and 
after the vowel in the syllable) 

• Two word-level features: The part-of-speech 
(noun, verb and adjective) and the number of 
syllables of the word 

• One phrase-level feature: The syllable break (the 
phrase break after the syllable) with the 
information of the neighboring (two previous, two 
next) instances 

• Six accentual features: The ToBI accents and 
boundary tones with the information of the 
neighboring (previous, next) instances, the last-
next accent (the number of the syllables since the 
last and to the next accented syllable) and we also 
included the stressed-unstressed syllable feature (if 
the syllable is stressed or not) and the accented-
unaccented syllable feature (if the syllable is 

accented or not) with the information of the 
neighboring (two previous, two next) instances 

 
 The overall size of the feature vector, which was 
used for the task of phone duration modeling, including 
the aforementioned features and their contextual 
information is 93. 
 
Performance estimation measures: In order to better 
utilize the available data, in all the experiments we 
followed an experimental protocol based on 10-fold 
cross-validation. The performance of the phone 
duration prediction models was measured in terms of 
Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE) and Correlation Coefficient (CC). The RMSE is 
frequently used as a global measure sensitive to gross 
errors. The MAE, described as the average magnitude 
of the errors in a set of predictions, does not consider 
the direction of the deviations from the ground truth 
and is not that sensitive to gross errors. The RMSE and 
the MAE are defined respectively by: 
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−
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Where: 
N = The number of the test instances 
yi = The actual duration in milliseconds or the z-

score of ith instance 
F(xi) = The predicted value for the ith instance 
 
 Finally we calculated the Correlation Coefficient 
(CC) which measures the statistical correlation between 
the actual and the predicted values of the phone 
duration directly in milliseconds or the z-scores. The 
CC is defined by: 

( )( )
( )

( ) ( )( )( )( )
( )

F

F F

Fcov F ,
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ΥΧ

Υ ΥΧ Χ

Ε Χ − µ Υ − µΧ Υ
= =

σ σ σ σ
 (4) 

 
Where: 
F(X) = The variable of the predicted values 
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Y = The actual values of the phone durations in 
milliseconds or of the z-scores 

 
 The µF(Χ) and µY are the mean values of the two 
variables and σF(Χ), σΥ are the standard deviations of the 
variables F(X) and Y respectively. Together these three 
performance measures offer a good indication about the 
accuracy of different models. 
 

RESULTS 
 
 As it was expected, the RMSE and the MAE values 
were lower-meaning more accurate models-while using 
the z-scores as prediction variable rather than when 
directly the phone duration (measured in milliseconds) 
was predicted by the models. Concerning the 
correlation coefficient, its values turned out to be 
higher-showing higher statistical correlation-for the 
case of using directly the phone duration in 
milliseconds rather than when the z-scores were used as 
prediction variable. This can be seen in Table 1, where 
the mean values of all the models of both prediction 
class variables (z-scores and durations in milliseconds) 
for all the emotions and all the performance estimation 
measurements are shown. This was expected since the 
z-scores are a better representation of the duration of 

phones offering a certain degree of normalization over 
different phones resulting in more accurate phone 
duration models (Black and Lenzo, 2000). Regarding 
the CC, the duration models in the z-score domain may 
not be as high as when training models predicting 
directly the duration of the phones, however, if the 
predicted z-scores are converted back into the absolute 
domain the correlations are better too (Black and 
Lenzo, 2000).  
 In the Table 2-4 we present the experimental 
results for the phone duration modeling task. In 
Table 2-4 the RMSE, the MAE and the CC values for 
each algorithm and emotion of both prediction class 
variables (z-scores and durations in milliseconds) are 
presented respectively. 
 
Table 1: Mean values of RMSE, MAE and CC for each emotion for 

the case of phone duration measured in milliseconds and z-
score as prediction variable class 

 RMSE  MAE  CC 
 ------------------------ ------------------------ ----------------------- 
 Z-scores Duration Z-scores Duration Z-scores Duration 
Anger 23.87 24.96 17.49 18.29 0.68 0.77 
Fear 20.63 21.91 15.29 16.15 0.64 0.65 
Joy 20.72 21.40 15.34 15.80 0.65 0.71 
Neutral 26.83 27.29 17.78 18.24 0.56 0.63 
Sadness 22.26 22.51 16.83 17.02 0.60 0.69 

 
Table 2: Root Mean Square Error (RMSE) for all the emotional categories and all the applied methods 

 Z-scores     Durations (ms) 
 ------------------------------------------------------------------------- ---------------------------------------------------------------------- 
RMSE Anger Fear Joy Neutral Sadness Anger Fear Joy Neutral Sadness 

AR-M5p-R 22.0 19.5 19.1 25.7 20.4 22.1 20.1 19.0 26.3 20.6 
AR-REPTrees 23.2 20.9 20.3 26.6 21.4 23.8 21.3 20.8 26.7 22.1 
BG-M5p-R 22.4 20.0 19.8 26.0 21.0 23.3 20.9 20.4 26.7 21.4 
BG-REPTrees 26.2 21.4 21.1 27.5 24.0 28.2 22.5 22.8 27.6 24.3 
IB12 23.2 20.7 20.6 26.3 21.9 24.7 21.8 22.2 27.5 20.6 
LWL 26.8 23.0 22.2 28.7 24.5 28.6 24.4 23.4 28.9 25.7 
LR 22.7 20.9 19.8 26.4 20.9 22.8 22.0 19.8 26.4 20.8 
M5p 21.7 19.6 19.4 25.2 20.9 21.7 20.2 19.5 26.2 20.9 
M5pR 22.9 20.5 20.4 26.4 22.0 24.1 21.6 21.6 27.2 22.1 
REPTrees 27.6 19.8 24.5 29.5 25.6 30.3 24.3 24.5 29.4 26.6 

 
Table 3: Mean Absolute Error (MAE) for all the emotional categories and all the applied methods 

 Z-scores     Durations (ms) 
 ------------------------------------------------------------------------ ---------------------------------------------------------------------- 
MAE Anger Fear Joy Neutral Sadness Anger Fear Joy Neutral Sadness 

AR-M5p-R 16.0 14.5 14.3 17.2 15.5 16.3 14.9 14.0 17.5 15.6 
AR-REPTrees 17.0 15.5 15.0 17.6 16.4 17.5 15.7 15.3 17.8 16.8 
BG-M5p-R 16.4 14.8 14.7 17.2 15.9 17.1 15.4 15.1 17.7 16.2 
BG-REPTrees 19.2 15.8 15.6 18.2 18.0 20.5 16.5 16.7 18.6 18.1 
IB12 16.6 15.0 14.9 17.4 16.4 18.0 15.8 16.4 18.4 15.6 
LWL 19.4 17.2 16.3 18.6 18.3 20.5 18.2 17.0 19.3 19.0 
LR 17.2 15.2 14.9 17.7 16.1 17.1 16.0 14.9 17.7 16.1 
M5p 16.0 14.7 14.5 16.6 15.8 16.1 15.0 14.8 17.1 16.0 
M5pR 16.8 15.3 15.3 17.7 16.7 17.6 16.0 15.9 18.2 16.8 
REPTrees 20.3 14.9 17.9 19.6 19.2 22.2 18.0 17.9 20.1 20.0 
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Table 4: Correlation Coefficient (CC) for all the emotional categories and all the applied methods 

 Z-scores     Durations 
 ---------------------------------------------------------------------- ---------------------------------------------------------------------- 
CC Anger Fear Joy Neutral Sadness Anger Fear Joy Neutral Sadness 
AR-M5p-R 0.74 0.69 0.70 0.62 0.69 0.83 0.72 0.78 0.66 0.75 
AR-REPTrees 0.70 0.62 0.65 0.56 0.63 0.79 0.67 0.73 0.65 0.70 
BG-M5p-R 0.73 0.67 0.68 0.60 0.67 0.81 0.70 0.75 0.66 0.73 
BG-REPTrees 0.60 0.60 0.62 0.52 0.51 0.70 0.62 0.66 0.62 0.63 
IB12 0.71 0.64 0.65 0.58 0.63 0.78 0.66 0.69 0.63 0.75 
LWL 0.59 0.52 0.58 0.51 0.51 0.70 0.55 0.65 0.59 0.59 
LR 0.72 0.63 0.68 0.57 0.67 0.81 0.66 0.76 0.66 0.74 
M5p 0.75 0.69 0.70 0.63 0.67 0.83 0.72 0.77 0.67 0.74 
M5pR 0.72 0.64 0.65 0.57 0.62 0.79 0.66 0.70 0.63 0.70 
REPTrees 0.55 0.67 0.60 0.44 0.43 0.65 0.55 0.60 0.57 0.54 

 
Comparison among the algorithms: As it is shown in 
the Table 2-4, all the algorithms which were applied in 
the task of the phone duration modeling built models 
with satisfactory performance, yielding RMSE between 
19.1 and 29.5 and MAE between 14.3 and 20.3 when 
the z-scores were used as prediction class variable and 
RMSE between 19.0 and 30.3 and MAE between 14.0 
and 22.2 when the phone durations in milliseconds 
were predicted directly. Regarding the CC, the models 
achieved performance between 0.43 and 0.75 and 
between 0.54 and 0.83 when the z-scores and when the 
phone durations in milliseconds were used as prediction 
class variable respectively, which is a considerably 
good outcome. 
 As can be seen in Table 2-4 and as was mentioned 
above, in almost all the models and all the emotional 
categories, the models which were built using the z-
scores as prediction variable achieved better 
performance than the respective ones predicting directly 
the phone duration in milliseconds. Furthermore, the 
methods with the overall best performance were the 
M5p model trees, as well as the meta-learning 
algorithms which used M5p-R regression trees as base 
classifiers (AR-M5p-R, BG-M5p-R). Moreover, it can 
be noticed that LR had a very satisfactory performance 
too, together with M5p regression trees (M5p-R). It is 
interesting to remark that between the two lazy learning 
methods which were applied, IB12 rather than LWL 
performed better in all cases. Furthermore in the case of 
Sadness emotional category the IB12 model predicting 
phone duration directly in milliseconds had the best 
performance along with the AR-M5p-R model. Finally, 
the REPTrees models appear to have the lowest 
performance, comparing to the others, both as single 
prediction method and as base-classifier for the case of 
AR and BG algorithms.  
 
Comparison among the emotions: Here, it is 
interesting to compare the experimental results on the 

basis of the performance of the models among the 
emotional categories. As can be seen in the Table 2 and 
3, a tendency in the case of some emotions to show 
lower RMSE and MAE values than others exists. This 
means that the same algorithms managed to achieve 
lower errors in some emotional categories than in 
others. 
 Joy and Fear emotional categories presented the 
lowest values for RMSE and MAE, independently of 
which algorithm was applied. In Joy category the 
RMSE did not overcome 24.5 and MAE had a 
maximum of 17.9 when the z-scores where used as 
prediction class variable and 24.5 and 17.9 respectively 
when the phone durations in milliseconds were predicted 
directly (both for the case of REPTrees). In Fear category 
the RMSE did not overcome 23.0 and MAE had a 
maximum of 17.2 when the z-scores where used as 
prediction class variable and 24.4 and 18.2 respectively 
when the phone durations in milliseconds were predicted 
directly (both for the case of LWL). Sadness and Anger 
emotional categories had slightly higher errors. Finally 
the Neutral category achieved the lowest performance, 
with maximum RMSE of 29.5 and MAE of 19.6 when 
the z-scores where used as prediction class variable and 
29.4 and 20.1 respectively when the phone durations in 
milliseconds were predicted directly (both for the case of 
REPTrees). The same tendency is shown on the CC, 
where the highest values were for the emotional category 
of Anger and then followed by that of the Joy, Fear, 
Sadness and Neutral categories. 
 

DISCUSSION 
 
 All the applied algorithms managed to build 
models which perform adequately on the task of phone 
duration modeling. The M5p models accomplished the 
best performances due to the fact that they adopt a 
greedy algorithm which constructs a model tree with a 
non-fixed  structure  by using a certain stopping criterion. 
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Fig. 1: Weighted average values of standard deviations 

in milliseconds of phone durations for all the 
emotion 

 
The M5’ algorithm minimizes the error at each interior 
node recursively until all or almost all of the instances 
are correctly predicted. In this way, although the 
computational cost increases, very robust models are 
constructed. Moreover, as it was expected, the models 
based on the meta-learning algorithms managed to 
build robust models by taking advantage of the 
information that is produced from other methods, as 
they process meta-data. However, it must be pointed 
out that the Additive Regression and the Bagging 
models performed better when were combined with a 
robust prediction method such as M5p-R, while they 
didn’t perform that well when the REPTrees were used 
as a base classifier instead. This leads to the conclusion 
that the choice of the appropriate classifiers is an 
important issue when meta-algorithms are applied. 
Moreover, it should be noticed that lazy learning 
methods or methods that apply a more strict strategy of 
‘pruning’ built models with lower computational cost, 
but achieve lower performance. 
 Finally it is interesting to point out that the 
emotional categories, the phones of which had the 
lowest values of standard deviation, namely the ones 
which had more uniform distribution of the mean 
duration of each phone, were the ones with the lowest 
prediction errors. As shown in Fig. 1, for the categories 
of Joy and Fear the weighted average of standard 
deviations of the phones was the lowest and therefore 
the phone duration models performed better. 
 

CONCLUSION 
 
 In this research, we coped with the task of phone 
duration modeling on Greek emotional speech 
implementing various machine learning techniques 
such as: model and regression trees, linear regression, 
lazy learning algorithms and meta-learning algorithms. 
The emotional speech database which was used on this 

task consisted of five archetypal emotional categories: 
anger, fear, joy, neutral and sadness. The results 
showed that all the machine learning algorithms 
managed to build robust phone duration models. The 
model trees based on the M5’ algorithm and the meta-
learning algorithms using regression trees based on the 
M5’ algorithm as base classifier, achieved the best 
performances. Finally the models built using the 
emotional categories with the most uniform 
distributions of the phone durations achieved the best 
performances. 
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