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Abstract: Generalized network problems describe situations in which flow can be generated or 
consumed through arcs. This research considers generalized shortest path problem in stochastic 
environment in which the changing rate of flow is random. To satisfy the demands of decision makers, 
three types of models have been formulated to solve the generalized shortest path problem under 
different decision criteria. The PSO algorithm is build to solve the generalized shortest path problem in 
stochastic environment. Finally, a numerical example is given to illustrate the effectiveness of the 
given algorithm. 
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INTRODUCTION 

 
 Generalized shortest path problem can be applied 
into many practical cases because gaining or losing 
always exists. In cash flow, an investor who designs his 
portfolio will consider lots of ways of investment, 
banks, stocks, futures, options and many others. They 
bring income or loss which is difficult to predict. At the 
same time, an investor's type, whether he is a hedger, a 
speculator or an arbitrageur determines the style of his 
portfolio. 
 The shortest path problem, finding the path with 
minimum distance or cost from a starting node to an 
ending node, is one of the most fundamental network 
optimization problems. Generalized shortest path 
problem (GSP), finding the path with minimum cost in 
a generalized network, has been studied since the 
1960s[4]. In 1966, Charnes and hike[3] designed an 
algorithm similar to Ford and Fulkerson's labelling 
method to solve the generalized shortest path problem. 
Ahuja, Magnanti and Orlin[1] developed a generalized 
network simplex algorithm to solve the generalized 
min-cost flow problem. Oldham[8] combined a dynamic 
programming approach similar to the Bellman-Ford 
algorithm with Megiddo's parametric search technique 
to solve the single-source generalized shortest path 
problem. Some stochastic shortest path models are 
studied9,10]. 
 In many cases of generalized shortest path 
problem, how the arcs might generate or consume flow 
is unpredictable thus we could not foretell ξij to be a 

deterministic value, that is, multiplier ξij does not 
appear to be deterministic value but a random variable. 
Therefore it is neither suitable nor effective to solve the 
problem with deterministic models. To deal with the 
uncertainty, we assume that each multiplier ξij is a 
random variable and establish stochastic programming 
models based[5,6,7]. 
 In this study, we consider a generalized network 
with n vertices with predetermined source vertex 1 and 
terminal vertex n. The arc multipliers ξ = { ξij} are 
assumed to be random variables and the cost parameter 
cij is deterministic. The objective is to find a directed 
path from the source vertex 1 to the terminal vertex n 
which takes the minimum cost to transport one unit of 
flow to vertex n, with three types of criteria to compare 
the efficiency of the paths in stochastic programming. 
The PSO algorithm is build to solve the generalized 
shortest path problem in stochastic environment and a 
numerical case will be solved to show the validity of 
the PSO algorithm. 
 

PROBLEM DESCRIPTIONS 
 
 A generalized network with stochastic parameters 
in suitable to model this problem. In the generalized 
network, vertices represent milestones, in which the 
capital returns from the previous investment and is 
available for further investment. Arcs denote 
investment procedures and ξij represents the exchange 
rate of the investment denoted by arc (i, j). The cost cij 
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represents original cost and the handling charge of 
trading. Similarly, we can also establish a generalized 
network to formulate a power transportation network in 
which the loss of power on the cables should be taken 
into account and an efficient route is wanted. 
 In order to model the generalized shortest path 
problem, we first give the following indices and 
parameters. 
 
v = {1,2,. . . , n) the set of nodes, 1 the starting and n 

the terminal 
A = The set of directed arcs available 
g = (v, A ): the graph 
ξij = Stochastic arc multipliers, {i,j} ∈ A 
ξij = Unit costs, {i,j} ∈ A 
 
 The objective of the generalized shortest path 
problem is to find a directed minimum-cost path from 1 
to n. 
 A directed path P is a sequence of arcs (vo, vl), (vl, 
v2), (v2, v3), (vm-1,…, vm) and vo and vm, are denoted as 
the source and terminal vertex of the path P. For 
concise, the path can be equally expressed as (vo, vl, 
v2,…, vm). 
 Different with the classic shortest path problem, in 
which there is always one unit of flow passing through, 
flow is gaining or losing in generalized network. Hence 
we define the concept of feasible flow in the following 
way. 
 A flow f is feasible if and only if: 
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There are many paths from 1 to n and we want to 
minimize the total cost on the path per unit of flow 
transported to n. In the flow network with multipliers ξ, 
let prev(n) denote the vertex just in front of n in a 
directed path P from 1 to n and the cost function C(P, ξ) 
is defined as follows: 
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where, f is a feasible flow that only takes positive value 
on path P, with: 
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MODELS FOR GSP IN STOCHASTIC 
ENVIRONMENT 

 
 We give the following three types of stochastic 
programming models in order to meet different 
optimization demands. 
 In the models, we use 0-1 decision variables: 
 

{ }ijx x | A= ∈  

 
to describe the path, where xij= 1 means that (i, j) ∈ P 
and vice versa. A solution x is feasible if and only if: 
 

( ) ( )

( ) ( )

( ) ( )

1j j1i, j A j,i A

ij jii, j A j,i A

nj jni, j A j,i A

x x 1,

x x 0, 2 i n 1

x x 1,

∈ ∈

∈ ∈

∈ ∈

� − =
�� − = ≤ ≤ −�
�

− = −��

� �
� �
� �

 

 
 If x is feasible, let ( ){ }ijP(x) i, j A | x 1 ,= ∈ =  denote 

the path determined by x. 
 
αααα-cost minimization model: Chance-Constrained 
Programming (CCP) developed[2,7], serves as a practical 
approach in uncertain programming. In chance 
constrained programming, a confidence level a is given 
and the objective is to minimize a cost °C which 
satisfies that the chance function Pr{C(P, α)≤°C} is at 
least α.  
 Here we establish the stochastic CCP model for the 
GSP in stochastic environment: 
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where, α is predetermined confidence level. 
 
Probability maximization model: In some cases with 
tight cost bond, decision-makers need a plan with 
maximal probability that the cost can be restricted. We 
can deal with this kind of problems by using 
Dependent-Chance Programming (DCP) initialized[7] to 
maximize the probability that we can meet the demand. 
The DCP model of GSP in stochastic a hybrid 
intelligent algorithm to solve the above environment is 
established as follows: 
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where, °C is a predetermined cost bound. 
 
PSO algorithm: The PSO Algorithm can be described 
as follows[11]: 
 Consider a swarm of p particles, with each 
particle’s position representing a possible solution point 
in the design problem space D. For each particle i, 
Kennedy and Eberhart proposed that its[12]: 
 
xi

k = Particle position 
vi

k = Particle velocity 
pi

k = Best remembered individual particle position 
pg

k = Best remembered swarm position 
c1, c2 = Cognitive and social parameters 
r1, r2 = Random numbers between 0 and 1 
 
 Position of individual particles updated as follows: 
 
  i i i

k 1 k k 1x x x+ += +  (4) 
 
with the velocity calculated as follows: 
 
  i i i i g i

k 1 k 1 1 k k 2 2 k kv v c r (p x ) c r (p x )+ = + − + −  (5) 
 
 The PSO algorithm flow can be described as 
follows: 
 
1. Initialize 
• Set constants kmax, c1, c2, max

ov  
• Set counters k = 0, i = 1 
• Randomly initialize particle positions i n

0x Din∈ ℜ  

• Randomly initialize particle velocities i max
0 o0 v v≤ ≤  

for i = 1,…,p 
• Evaluate fitness values i

0f  using design space co-
ordinates i

0x  for i = 1,…p using Eq. 3 
• Set f i

bestf = i
0f , Pi i

0x  for i = 1,…p  

• Set g
bestf  to best bestfi  and go to corresponding i

0x  
 
2. Optimize 
• Update particle velocity vector i

k 1v + using Eq. 5 
• Update particle position vector i

k 1x + using Eq. 4 

• Evaluate fitness value i
kf  using design space co-

ordinates i
kx using Eq. 3 

• If i i
k bestf f≤  then i i i i

best k kf f ,P x= =  

• If i g
k bestf f≤  then i g g i

best k kf f ,P x= =  
• If k > kmax go to 3 
• If stopping condition is satisfied then go to 3 
• Increment i. If i > p then increment k and set i = 1 
• Go to 2(a) 
 
3. Report results 
4. Terminate 
 

NUMERICAL EXPERIMENTS 
 
 Presented here is an instance of generalized 
shortest  path problem in stochastic environment on 
Fig. 1. The costs and multipliers on each arc are listed 
in Table 1.  
 

 
 

Fig. 1: A network graph 
 
Table 1: Randam multiplier and costs 
Arc Multiplier Cost Arc Multiplier Cost 
(1, 2) N (1.15, 0.25) 6.3 (1, 3) N (1.1, 0.35) 7.0 
(1, 4) N (1.2, 0.35) 7.0 (2, 5) N (1.0, 0.3) 7.5 
(2, 6) N (1.25, 0.35) 2.0 (3, 6) N (1.6, 0.95) 8.0 
(3, 7) N (0.9, 0.5) 5.0 (3, 10) N (1.25, 0.35) 4.5 
(4, 7) N (0.95, 0.3) 6.3 (4, 8) N (0.9, 0.45) 4.5 
(5, 9) N (0.85, 0.25) 6.2 (5, 10) N (1.15, 0.55) 5.6 
(6, 10) N (1.0, 0.45) 6.6 (6, 11) N (1.05, 0.5) 8.0 
(7, 11) N (1.3, 0.5) 8.5 (7, 12) N (0.55, 0.35) 5.2 
(8, 12) N (1.0, 0.3) 7.1 (8, 13) N (1.45, 0.35) 9.0 
(9, 14) N (1.1, 0.5) 3.5 (9, 15) N (1.0, 0.5) 2.0 
(10, 14) N (1.05, 0.45) 7.5 (11, 14) N (1.3, 0.4) 8.2 
(11, 15) N (1.15, 0.45) 7.5 (11, 16) N (0.9, 0.35) 6.0 
(12, 13) N (1.1, 0.35) 7.5 (12, 16) N (1.35, 0.5) 9.5 
(13, 17) N (0.75, 0.25) 6.2 (13, 18) N (0.95, 0.55) 6.4 
(13, 20) N (1.25, 0.5) 8.7 (14, 18) N (1.15, 0.35) 6.7 
(14, 19) N (1.25, 0.45) 8.6 (15, 18) N (1.15, 0.5) 9.5 
(15, 19) N (1.45, 0.5) 9.8 (16, 19) N (1.95, 0.35) 5.8 
(16, 20) N (1.05, 0.35) 5.0 (17, 20) N (0.95, 0.3) 5.6 
(18, 21) N (1.2, 0.4) 3.5 (19, 21) N (0.8, 0.3) 5.2 
(20, 21) N (0.9, 0.2) 6.7 
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Table 2: α-cost minimization model 
p D c1 = c2 Probability Error (%) 
40 4 0.3 0.883 1.06 
40 4 0.2 0.883 1.02 
40 3 0.3 0.880 0.69 
30 4 0.3 0.877 0.34 
30 4 0.2 0.874 0.00 
30 3 0.3 0.881 0.84 

 
Table 3: Probability maximization model 
p D c1 = c2 Probability Error (%) 
40 4 0.3 0.883 1.06 
40 4 0.2 0.883 1.02 
40 3 0.3 0.880 0.69 
30 4 0.3 0.877 0.34 
30 4 0.2 0.874 0.00 
30 3 0.3 0.881 0.84 

 
 The multipliers are assumed to be Normal random 
variables denoted by N (µ, σ2) in which � denotes the 
expected value and σ2 denotes the variance of the 
Normal random variable. 
 In the hybrid intelligent algorithm for the 
numerical examples, three parameters are given in 
advance: 
 The swarm of p particles, with each particle’s 
position representing a possible solution point in the 
design problem space D and c1, c2: Cognitive and social 
parameters 
 We do some experiments in different parameters 
and show the fluctuation rate of the result influenced by 
the three parameters. 
 Firstly, we calculate the α = 0.9-cost minimization 
model from Eq. 2. 
 After  running  the  PSO algorithm, the best path 
P* = (1,3,11,14,18,21). 
 The various data are presented and compared in 
Table 2. We can see that the objective values vary a 
little with different experiment parameters. In order to 
compare the difference among these objective values, 
we introduce the relative error parameter. It 
corresponds with the last column named by error in 
Table 2. The relative error is calculated by the formula: 
 

|actual value-optimal value|/optimal value×100% 
 
 In Table 2 we can see that the results differ with 
different parameters applied. The maximal error is 
3.14%, which shows the effectiveness of the hybrid 
intelligent algorithm. 
 Secondly, we calculate the maximum credibility 
that the °C cost is less than or equal to 80.00 in Eq. 3. 
 After experiments, the best path P* = (1, 2, 6, 10, 
14, 18, 21) is found. 
 Table 3 shows that the objective value fluctuates 
with different genetic parameters. However, the 

maximal error is 1.53%, which shows that the algorithm 
is effective. 

CONCLUSION 
 
 In this study, we consider a generalized shortest 
path problem in stochastic environment. We established 
and � cost minimization model and a probability 
maximization model, the �-cost minimization model in 
order to satisfy different optimization demands. Then 
we integrated PSO to design a intelligent algorithm to 
solve the problem. Finally, the effectiveness of the PSO 
algorithm was shown by numerical examples. 
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