Journal of Computer Sciences 1 (4): 521-529, 2005
ISSN 1549-3636
© 2005 Science Publications

BDD Path Length Minimization Based on Initial Variable Ordering

'P.W.C. Prasad, 'M. Raseen, 2A. Assi and ’S.M.N.A. Senanayake
'College of Information Technology, United Arab Emirates University, Al Ain, UAE
*American University College of Technology, Department of Computer Engineering, Lebanon
3School of Engineering, Monash University, Malaysia Campus, Malaysia

Abstract: A large variety of problems in digital system design, combinational optimization and
verification can be formulated in terms of operations performed on Boolean functions. The time
complexity of Binary Decision Diagram (BDD) representing a Boolean function is directly related to
the path length of that BDD. In this paper we present a method to generate a BDD with minimum path
length. The Average Path Length (APL) and Longest Path Length (LPL) of the BDD are evaluated
and discussed. The proposed method analyses the essentiality of a given variable order based on the
complexity of sub functions derived from variable substitution. The variable that produces minimal
cumulative complexity for the sub-functions is given priority over other variables. The experimental
results and comparisons using benchmark circuits show that the proposed method is an encouraging
approach towards minimizing the evaluation time of Boolean functions, consequently minimizing the

time complexity of BDDs.

Key words: Binary decision diagram, boolean function, average path length, longest path length

INTRODUCTION

For the last two decades, BDD have gained great
popularity in representing discrete functions. BDD in
general is a direct acyclic graph representation of
Boolean functions proposed by Bryant and Akers!'.
The success of this technique has attracted many
researchers in the area of synthesis and verification of
digital VLSI circuits. Because of its efficiency in
representing a variety of practical functions”®*, BDDs
became very popular data structures. The efficiency of
BDDs depends mainly on its size, which is the size of
their graph representations. This size depends
dramatically on the variable ordering adopted to build
the BDD”). Finding an optimal variable order is often
worth spending considerable computational efforts
because this implies savings for further operations on
the constructed BDD™. Some functions such as adders
and depending on the variable ordering adopted, may
lead to an exponential BDD sizes in terms of the
number of input variables. Finding an optimal variable
ordering is an NP-hard problem”. Another critical
parameter during the construction of BDDs is the
maximum memory requirement, which is directly
proportional to the number of nodes. A good variable
ordering can lead to a smaller BDD and faster runtime,
whereas a bad ordering can lead to an exponential
growth in the size of the BDD and hence can exceed
the available memory!'”. Consequently, much attention
has been devoted to techniques dedicated to finding
good variable ordering. In general, variable ordering

techniques fall into two categories: Static Variable
Ordering (SVO) algorithms!'"*'? and Dynamic Variable
Ordering (DVO) algorithms!®').

The evaluation time is also another important
parameter, which uses BDDs to evaluate logic
functions. The evaluation time is proportional to the
path length in the BDD. Therefore, minimization of the
path length can improve the performance of the circuit
implementing a Boolean function, which will
eventually enhance the performance of the final
implementation. In general the minimization of the path
length in Decision Diagrams (DD) is important in
database structures, pattern recognition, logic
simulation and software synthesis!'”. The methods
proposed for the minimization of APL!"*'® reduces the
average evaluation time of logic functions. Most of
these methods are based on either heuristic variable
ordering or dynamic variable ordering techniques. The
minimization of APLs leads to circuits with smaller
depth of paths from the Root to the Terminal nodes of
the BDD. The resulting circuit will be optimized for
speed on one hand and on the other hand the number of
very long paths in the BDD will be reduced"”. The
minimization of APLs is of great importance in real
time operating system applications!"**". The
minimization of the LPL of a BDD can reduce the
longest evaluation time, which is very important for
Pass Transistor Logic (PTL)?'#. One of the main
problems with pass transistor networks is the presence
of long paths: the delay of a chain of # pass transistors
is proportional to n”. Inserting buffers can reduce the

Corresponding Author:

P.W.C. Prasad, College of Information Technology, United Arab Emirates University, P.O. Box

17555, Al Ain, U.AE. Tel:971-3- 7133124, Fax: 971-3-7626309

J. Computer Sci., 1 (4): 521-529, 2005

path length, but this increases the silicon area. So the
minimization of the longest evaluation time will
improve the performance of the circuit® ! In this
study we propose an algorithm that minimizes the path
length of BDDs. The resulting initial variable ordering
will produce BDDs with the minimum possible APL
and LPL, consequently reducing the number of nodes to
an acceptable size. Hereafter, we introduce next the
necessary terminologies and definitions, followed by the
proposed method that computes the minimum APL and
LPL of the BDD based on static variable ordering,
experimental results and the conclusion of our study
with an outline of our future work.

PRELIMINARIES
Basic definitions for BDDs are given inl"****! In
the following we review some of these definitions.

Definition 1: A BDD is a directed acyclic graph
(DAG). The graph has two sink nodes labeled 0 and 1
representing the Boolean functions 0 and 1. Each non-
sink node is labeled with a Boolean variable v and has
two out-edges labeled 1 (or then) and 0 (or else). Each
non-sink node represents the Boolean function
corresponding to its edge "1" if v = 1, or the Boolean
function corresponding to its edge "0" if v = 0.

Definition 2: An Ordered BDD (OBDD) is a BDD in
which each variable is encountered no more than once
in any path and always in the same order along each
path.

Definition 3: A Reduced OBDD (ROBDD) is an
OBDD with only two reduction rules: deletion rule and
merging rule. The Reduction rules remove
redundancies within the OBDD.

Variable Ordering: The size of a BDD is largely
affected and its variation can be linear or exponential
depending on the choice of the variable ordering in
building the BDD. Figure 1 illustrates the effect of the
variable ordering!"! on the size of BDDs for the Boolean
function (1):

J =X X+ XXy Xy Xy T XXXy ey
Definition 4: In a BDD, a sequence of edge and nodes
leading from the root node to a terminal node is called

Path. The number of non-terminal nodes on the path is
called the Path Length.

5722

0

(a) x,x,x,x,

(b) x,x;x,x,

Fig. I Effect of the variable ordering on the size of BDD

Fig. 2. Node Traversing Probability in a BDD

Definition 5: The APL is equal to the sum of the node
traversing probabilities of the non-terminal nodes''*'*,
Node traversing probability denoted by P(v,)is the
fraction of all 2" assignments of values to the variables
whose path includes node v,. The APL can be

expressed by the following equation (2):

APL = Af P(v,)

i=0

)

Where, N is the number of non-terminal nodes.

Definition 6: The edge traversing probability, denoted

by P(e,) (or P(e,)), is the fraction of all 2"

assignments of values to variables whose path includes

e, (or e,), where ¢, (or e,) denotes edge “0” (or the
w»

edge) directed from away node V!l Since all

paths include the root node, this node is traversed with

J. Computer Sci., 1 (4): 521-529, 2005

probability 1.00. Since all assignments to values of
variables are equally likely, we can use the following
equation to calculate the P(V;) for the rest of the

nodes:

POD _ pley) = Ple,) 3)

Definition 7: The Longest Path Length (LPL) of a
BDD denoted by LPL (BDD), is the Length of the
Longest Path.

Example: Consider the BDD graph shown in Fig. 2. In
this example we will compute the APL and the LPL:
The root node P(V,)is always equal to 1.00.

P(V}) = P(e,,) =0.50
P(V,) = P(e,)=0.50.

P(V;) = P(e,) =0.25

P(V,) = P(ey) = 0.25

P(V5) = Pe,)+ Ple,) =0.125+0.25 = 0.375
Finally

APL = IZSJOP(V,.) =2.875

LPL = LongestPath =x;, > x; > x, > x, =4

Definition 8: In the DD of a logic function /', the

memory size of the DD, denoted by Mem (DD), is the
number of words needed to represent the DD in
memory!"®.

In a memory, each non-terminal node requires an index
and pointers to the succeeding nodes. Since each non-
terminal node in a BDD has two pointers, the memory
size needed to represent a BDD is given by:

Mem(BDD) = (2+1) x nodes (BDD) 4

PROPOSED METHOD

The proposed method is a static variable ordering
technique®*”, which uses the input Boolean
expression to find the variable ordering used to
minimize the APL and LPL. This is based on a single
level Boolean function; hence, if a Boolean function is
multilevel, then it is converted to a single level function
prior to applying the proposed method. MVSIS (Multi
Valued Logic Synthesis Tool) Version 1.0 is used for
the conversion of Boolean functions from multilevel to
single level. The proposed method consists of selecting
the variable based on the complexity of sub-functions
derived by assigning logic 1 and logic 0 to that
variable. The variable that produces sub-functions with
minimum complexity is given priority over other
variables. The complexity of the sub-functions is
evaluated based on

523

the number of variables (NV), number of product terms
(NPT) and the number of variable occurrences (NVO).
Using this method we can produce the BDD graph with
the shortest possible paths among all nodes including
the terminal nodes, which will eventually reduce the
path length. The complete steps of the proposed method
are explained in the following algorithm:

Step 1: Note the number of inputs (V) of the Boolean
function with input variables x;,x,,x;, -, X,

Step 2: Set the variable counter (M) to 1

Step 3: Substitute logic 0 for variable Xj, in the input
function

Step 4: Simplify the resulting function using
McCluskey’s simplification method

Step 5: Note the number of variables (NV), the
number of product terms (NPT) and the
number of variable occurrences (NVO)

Step 6: Substitute logic 1 for variable Xj, in the input
function and repeat steps 4 and 5

Step 7: Note the total of NV, NPT and NVO obtained
in steps 5 and 6

Step 8: Repeatsteps3to7 forM=2ton

Step 9: The variable that produces the least NV is
selected as next variable in the order

Step 10:If two or more variables have the same NV,
then selection is based on the least NPT

Step 11:If two or more variables have the same NPT,
then selection is based on the least NVO

Step 12:If there are still two or more variables that
have equal NV, NPT and NV O, then the first of
these variables is selected

Step 13: The selected variable is then substituted for 0
and 1 in the input function and two sub-
expressions are obtained

Step 14:Steps 1 to 12 are repeated for the two new
sub-expressions till we get the second variable
of the order

Step 15: The above steps are repeated for 2, 4, 8,

sub-expressions until we find all the variables
of the order

For each of the iterations described above, we note
that the number of expressions increases but the
complexity of the expressions decreases. This decrease
in complexity reduces the procedure to find the
variables that come next in the variable order. The
obtained variable order is used to build the BDD and
compute the APL and LPL using Colorado University
Decision Diagram (CUDD) package'®®). The following
example illustrates the proposed algorithm.

the Boolean

function ' = x; - x, - X, + X, - X; - X, + X, - x5, with 4

Example: Consider

J. Computer Sci., 1 (4): 521-529, 2005

Table 1: The parameters for NV, NPT and NVO

Variables NV NPT NVO
Logic 0 Logic 1 Total Logic 0 Logic 1 Total Logic0 Logic 1 Total
X 3 2 5 1 2 3 3 2 5
X 2 3 5 1 3 4 2 6 8
X3 3 1 4 2 1 3 4 1 5
X4 3 3 6 2 2 4 4 4 8
Table 2: The NV, NPT and NVO for the twelve sub functions
Variables NV NPT NVO
Logic0 Logicl Total Logic0 Logicl Total Logic 0 Logic 1 Total
X5=0 2 1 1 1 2 1
X, 3 2 3
X5=1 0 0 0 0 0 0
X5=0 0 2 0 2 0 2
X5 4 4 4
X;5=1 1 1 1 1 1 1
X3=0 2 1 1 1 2 1
X4 5 4 5
X5=1 1 1 1 1 1 1
variables x,,x,,x; and Xx,. Substituting logic 0 and x; =1, x, =0= Xx, x;=Lx,=1=x

logic 1 for the four variables x;,x,,x; and x, we get
the following sub-functions:

x1=0:>x2-z-x4 &)
xl=1:x2-g+x2-x_3-x4+x3:>x2+x3 (6)
X, =0=xx, (M
x2=1:>)c1~Z+Z‘x4+xl'x3 (8)
X, =0=x -x, -x_4+x2 "Xy =X X, X, X, (9)
x3=1:>xl-x2-z+x1:>xl (10)
X, =0=x - x, +x, - x4 (11)
X, =1:>)CZ'Z-}—)CI~)C3 (12)

The parameters NV, NPT and NVO for the above
six sub-functions are shown in Table 1.

From Table 1, variable X3 is selected as first
variable in the order since it has the least total of NV’
compared to other variables. Two new sub-expressions

(9) and (10) are obtained from substituting x, =0 and
x; =1 respectively. From expressions (9) and (10) we

re-start the procedure to find the second variable of the
order. Substituting logic 0 and logic 1 for the three
variables X;,X, and X, in expressions (9) and (10)
we obtain the following sub-functions:

x;=0,x, =0=x,x, x=0,x,=1=x,
x=Lx=0=0 x=Lx=1=1
x=0,x,=0=0 x,=0,x,=1=x+x,
x=Lx,=0=x x=Lx,=1=x

x=0,x,=0=-x-x, x;,=0,x,=1=x,

524

Table 2 indicates the values of NV, NPT and NVO
for the twelve sub functions. From Table 2 the variable
x; is selected as next variable since it has the least
number of total NV. It should be noted here that, so far
in this example there was no need to check the
parameters NPT and NVO, since NV was always the
least. The first two variables are selected, hence, four
sub-expressions are obtained from the substitution set
(x3, x1) = (0,0), (0,1), (1,0) and (1,1). The 4 sub-
functions can be used to find the third variable of the
order. Performing the same procedure described above
one can find all the variables in the order. In our
example, after going through all required steps we
obtain the variables order x,,x;,x,,x,. This variable
order is used to build the BDD and find the APL and
LPL.

RESULTS

Here we present two sets of results using the
Colorado University Decision Diagram (CUDD)
package®, on a Pentium 4 machine with 512 MB
RAMs. The first set represents the results derived from
three of the best CUDD variable ordering techniques
(Symmetric ~ Sifting, Swapping and Window
Permutation) and the proposed method. The second set
of results is a comparison between the proposed
method and two available APL methods. All
experiments were performed using selected ISCAS
benchmark circuits!®’?®. In Table 3, 5 and 6, a
comparison with CUDD methods was performed for
the parameters APL, Mem (BDD) and LPL
respectively. Table 4 illustrates the results of the
comparison with the latest available methods for the
minimization of APL. In each of the Table 3-6 the first
column shows a list of selected ISCAS benchmark
circuits we have used to demonstrate the performance
of the proposed method.

J. Computer Sci., 1 (4): 521-529, 2005

Average path length: In Table 3, columns 2, 4 and 6
illustrate the results obtained for three CUDD variable
reordering methods, namely the swapping, symmetric
sifting and window permutation in terms of number of
nodes. Columns 3, 5 and 7 show the results in terms of
APL. The results shown in columns 8 and 9 are from
the implementation of our proposed method in
terms of number of nodes and APL
respectively. The minimum number of Nodes, the
minimum APL and the number of nodes for the
minimum APL are illustrated in columns 10, 11 and 12
respectively. The gain factors of each method against
the minimum APL are given in columns 13, 14, 15 and
16.
The results obtained indicate the efficiency of the

proposed method compared to other CUDD methods in
term of APL and number of nodes. In general, the

results obtained in column 16 indicate the effectiveness
of the proposed method, where a minimum APL gain is
obtained for 97% of the circuits, compared to 26, 18
and 24% achieved by the Random Swapping method,
the Symmetric Sift method and the Window
Permutation method respectively.

Even though all the circuits equally benefit from
the proposed algorithm, in some cases like i6, 17, X4,
X2, alu2, pml, 5xpl, sao2, mux, cml150a, cml62a,
cml63a and cml51a, the reduction is such as to make a
dramatic difference in the processing of the circuits.
The results indicate the potential of the proposed
method, where it managed to minimize both the APL
and the number of nodes for 52% of ISCAS
benchmarks, i.e. il, X2, apex4, b9, cm42a, decod,
misex1, misex2, pml, 9sym, z4ml, clip, majority,
cml38a, mux, cm150a and cm163a.

Table 3: APL Results for selected benchmark circuits
CUDD Methods Proposed — ;
. Lmer o . . i
Beljchrpark Swapping | Symmetric Sift P;’r\ﬂr:i;tvi\;n Method Nﬁ::gz:n;f hlirirmLim No.dn.as for APL Gain Factor against Minimum APL
Clreuts nades AL HinimLm Symmetric window | Proposed
Modes APL Modes | APL | MNodes APL Nodes | APL APL | Swvapping & et || (T

il T2 2357 il 2257 i 2257 7o 21.27 7o 21.27 ki) 0.31 0.4as 0.as 1.00
i 433 20625 4058 (205383 440 207853 478 18338 405 185 .38 413 0.1 092 0.91 1.00
ir 535 235313 510 228413 BEGE 26525 535 19925 510 199 25 535 0.85 0.a87 0.7rs 1.00
Ha 595 22975 B90 18623 1199 23310 F20 17360 a0 17360 720 076 043 074 1.00
M2 5O 1558 23 15,61 G 2083 51 14.86 21 14.86 a1 0.50 095 0.7 1.00
Aped 1452 11957 1410 11965 1583 11813 1384 11202 1384 11202 1354 0.94 0494 0.as 1.00
A2 189 2947 T8 2536 249 28496 152 2423 179 2423 182 0.83 085 0.81 1.00
B3 245 B951 196 B563 | 275 B910 | 190 B1.42 180 E1.42 190 0.55 094 0.59 1.00
[ted 108 | 3953 95 3628 108 429 104 3588 95 35.88 104 0.91 04939 0.84 1.00
CimdzZa Al 1875 50 18.75 50 1875 50 18.75 50 18.75 Al 1.00 1.00 1.00 1.00
decod a5 .00 Q5 .00 96 3100 95 31.00 e 31.00 95 1.00 1.00 1.00 1.00
Mizex2 176 4115 174 3962 1756 4134 174 3649 174 36.49 174 0.9 0492 0.88 1.00
Pmi 75 2923 7 2710 &1 2629 T4 2218 74 2218 T4 0.76 0.2 0.84 1.00
Toon 45 24.00 45 24.00 45 24 00 45 24.00 45 24.00 43 1.00 1.00 1.00 1.00
Sxpl &5 3681 il 34 .44 g9 3744 100 M 23 78 31.23 100 0.85 091 0.83 1.00
Jzym 25 7.34 25 T34 25 7.34 25 T34 25 7.4 25 1.00 1.00 1.00 1.00
Conl 15 6.44 16 631 18 5.31 21 E.04 16 E.04 21 0.94 045 0.86 1.00
Mizex1 [35] 2368 B 2384 G 23453 5151 2203 5151 2203 (=15 0.93 092 0.94 1.00
F31m |45 2555 51 251 B3 2858 79 278 51 2718 79 0.95 0497 0.as 1.00
Taml 36 1713 32 1765 45 1550 32 16.33 32 16.33 32 0485 0 0.85 1.00
San2 113 1147 17 14200 1™ 223 1 10.59 113 10.59 121 0.92 075 047 1.00
Cma5a 41 a.70 41 5.22 41 T2 41 T2 41 T2 41 0.50 0494 1.00 1.00
Sguars a4 22 69 52 2.8 57 21 56 53 20.44 52 20.44 a3 0.90 094 0.as 1.00
Rogd 24 2415 o4 2415 54 2415 54 2415 24 2415 54 1.00 1.00 1.00 1.00
clip 152 2881 116 3009 202 M3 M2 78S 112 27.88 112 0.a7 0493 0.a0 1.00
17 10 5.50 11 5.00 13 5.50 11 5.50 10 5.00 11 0.91 1.00 0.91 0.a1
inds 952 B4 250 BO4T | 2973 TS5 B32 5569 S50 55,69 E32 081 o4&y 075 1.00
majority g 256] 3.81 g 3.81 il 256 g 256 g 1.00 067 0Ey 1.00
BE1 12 6.50 12 5.50 12 5.50 12 .50 12 6.50 12 1.00 1.00 1.00 1.00
cm1sla 41 9.00 34 T.0o 555 2050 36 E.42 34 E.42 36 0.7 049z 0.3 1.00
Zml 38a a6 15.75 a6 1575 56 1575 56 1475 a6 1675 56 1.00 1.00 1.00 1.00
Rd53 24 13.00 24 13.00 24 1300 24 13.00 24 13.00 24 1.00 1.00 1.00 1.00
B12 52 21.91 i 23352 a7 2518 g3 21.91 7 21.91 a3 1.00 0.94 0.a7 1.00
L 36 6.00 33 5.50 2327 1490 33 350 a3 3.50 33 0.55 064 0.23 1.00
cm150a 78 | 7A0 33 | 550 332 1816 32 | 350 32 3.50 32 047 064 019 100
inc 223 5892 220 Saed4 | 237 5782 M7 5TE2 220 57.32 247 0487 0496 0.a3 1.00
cm1B2a 49 14 64 45 1282 52 16.20 o4 11.70 43 11.70 a4 0.50 091 ny2 1.00
cmiG3a 46 15.01 42 12.70 a5 1770 42 11.70 42 11.70 42 0.75 0492 066 1.00

026 018 0.24 0.a7

Gain Factor against Minimum APL in %

525

J. Computer Sci., 1 (4): 521-529, 2005

Table 4: Results Comparison with available method

Benchmark Circuits

Currently Available Methods

Proposed ethoo

APL Gain Factor aowver
2xvailable Methods

Paper S Paper 11

Mame Impt St Modes APl Modes APl Modes APL Paper 5 FPaper 11
Sxpl 7 10 91 31.31] 31.28 90 31.23 1.003 1.002
caon 7 2 16 G.06 16 5.94 13 E.04 1.004 0.954
Misexl =] 7 63 22186 54 21.97 [a15] 2203 1.006 0.997
Falm a2 g TE 27.45 54 27.45 74 2718 1.010 1.010
Zaml 7 4 32 1713 28 16.38 32 16.35 1.048 1.002
San2 10 4 128 10.71 121 10.59 121 10.59 1.011 1.000
CmBaa 11 3 47 a8.28 38 F.T2 41 T.r2 1.0732 1.000
Ccmlala 12 2 26 6.0 32 E.00 &1 5] 6.42 1.012 0.935
B12 14 =] a1 22,22 71 21.83 83 21.91 1.014 0.9499
cm1G62a 14) 59 11.7 48 11.71 54 11.7 1.000 1.001
cm163a 16 5 42 11.7)51 11.7 42 11.7 1.000 1.000
Il 21 1 33 3.5 32 3.5 33 3.5 1.000 1.000
cim150a 21 1 33 3.5 32 3.8 32 3.5 1.000 1.000

Table 5: Memory size requirement for selected benchmark circuits

hemory Size of BDD

Benchmark . - Gain Facotr against minimum Mem(BO0)
Circuits Swapping Svmnjetrn:: Wndov_\-' Proposed Mirimurm Symmetric Wiricha: Proposed
Sift Permutation Methodd Wemory Swvapping e ST e

il 216 M3 231 0 0 0a7 099 0.91 1.00
i5 1299 1224 1320 1254 1224 0.94 1.00 093 04as
ir 1605 15350 1993 1605 1530 0.a5 1.00 aFy 04as
e 2E85 2070 3597 HME0 2070 ay7 1.00 0.55 0498
w2 180 139 204 153 133 0.55 086 075 1.00
Apexd 4356 42350 4749 4152 4152 0.85 085 a.57 1.00
Aluz S67 537 747 546 537 0.85 1.00 072 0485
B9 735 585 §25 570 570 073 o087 0.69 1.00
[aied 24 285 S24 312 285 0.55 1.00 0.55 0.91
Cmd2a 150 150 150 150 150 1.00 1.00 1.00 1.00
decod 2858 285 2858 288 288 1.00 1.00 1.00 1.00
Misex2 528 522 534 522 522 0.89 1.00 0.95 1.00
Prmr 234 231 243 222 222 0.95 096 0.91 1.00
Tcon 144 144 144 144 144 1.00 1.00 1.00 1.00
axpl 264 237 267 300 237 0.90 1.00 0.89 0.79
Ssvm 75 75 75 75 75 1.00 1.00 1.00 1.00
Coni 24 45 54 E3 45 0.59 1.00 0.89 076
Misexl 204 195 204 198 188 087 1.00 0.87 1.00
FS1m 195 183 204 237 183 0.892 1.00 0.80 077
Zaml 105 =L 135 96 96 0.59 1.00 0.71 1.00
Saon2 338 351 213 363 339 1.00 0487 0.66 0.83
Cma5sa 123 123 123 123 123 1.00 1.00 1.00 1.00
Sgquars 162 156 171 159 156 0.95 1.00 0.91 0.95
Ro54 162 162 162 162 162 1.00 1.00 1.00 1.00
clip 436 45 G0 336 336 0.74 0487 0.55 1.00
c17 30 33 39 33 30 1.00 0.91 0.F7 0.91
tmda 2886 1630 5919 1596 1650 0.57 1.00 015 0.57
majority 24 24 24 24 24 1.00 1.00 1.00 1.00
B1 26 6 36 36 36 1.00 1.00 1.00 1.00
B E] 123 102 1674 108 102 0.535 1.00 0.06 0.94
Cinl 38a 165 168 168 165 168 1.00 1.00 1.00 1.00
Ri53 72 72 72 72 72 1.00 1.00 1.00 1.00
B12 245 231 291 249 231 0.94 1.00 0.79 093
ML 108 a9 E9E1 939 99 0.9z 1.00 0.0 1.00
ciml S0a 234 a9 996 el 96 0.41 [nR=F} 010 1.00
inc: 569 [=1=11] 711 741 [=1=10] 0.99 1.00 0.95 0.59
ciml 62a 147 144 186 162 144 0.95 1.00 0.7y 0.59
ciml 63a 135 126 165 128 126 0.91 1.00 076 1.00

Gain in % 0.32 ave 0.26 058

526

J. Computer Sci., 1 (4): 521-529, 2005

Table 6: LPL results for selected benchmark circuits

CUDD Methods

- Proposed - Murmber of f i e
Elen_chrpark Swapping Syn‘nsr:'lf?tnc P;‘:ﬂr:li;vi\;n Method Nﬂ:g.::n;f i Noldlles e LPL Gain Factor against the Minimum LPL
credts Modes L M Symmetric Wincoy Proposed
Modes LPL | Modes LPL Modes | LPL | Modes | LPL LPL | swvapping e ke | e

it 72 |57 | 7 s 77 | 57| 70 | 58 70 =6 70 0.93 1.00 095 1.00
i5 433 (258 | 408 | 240 440 | 240 475 240 408 240 475 093 1.00 1.00 1.00
i £35 (281 510 271 GBS | 303 535 239 &10 239 535 0&s5 0.56 079 1.00
¥4 595 (541 | BO0 537 1199 | 554 | 720 532 G40 532 720 0.5 1.00 0.95 1.00
w2 0 34| 53 33 & 3 51 3 51 3 51 0.9 0.94 074 1.00
Apesd 1452 (171 | 1410 171 1583 | 173 1354 168 1354 168 1354 058 0.9 0.7 1.00
22 189 |36 | 179 | 36 243 | 37 182 36 179 36 179 1.00 1.00 0497 1.00
B9 245 (150 | 188 (150 275 | 153 1890 147 | 180 147 190 = 095 0.95 1.00
oo 108 |74 95 | B3 108 | 71 104 B9 as 69 a5 083 1.00 0.7 1.00
decod 95 a0 | 95 80 95 | B0 | 95 &0 e a0 96 1.00 1.00 1.00 1.00
Misex2 176 (134 | 174 132 178 136 174 132 174 132 174 0.9 1.00 0487 1.00
P 7§ B3 | §7 &3 & | B3 74 &3 74 63 74 1.00 1.00 1.00 1.00
S 5 49 | 79 49 89 | 43 100 48 79 43 79 1.00 1.00 1.00 1.00
Coni 1 10| 18 9 13 10| 2 10 16 g 16 090 1.00 0.0 0.90
Misex 5 34 | 66 3B/ 63 | 34 | 65 34 &6 34 B6 1.00 0.94 1.00 1.00
Fsim BE 36 | &1 34 65 | 3 73 3w &1 34 &1 0.94 1.00 094 0.94
Zami 3 22| 33 2@ 45 22| om A 32 2 32 0.95 095 095 1.00
Sa02 113 40 | 117 |40 171 | 40 42 40 113 40 13 1.00 1.00 1.00 1.00
Cmasa 4 29| #9129 2@ 41 2 41 29 41 1.00 1.00 1.00 1.00
Souars 54 |34 | 52 3@ 57 | 34 | 53 32 52 32 52 0.94 1.00 054 1.00
clip 152 |45 | 116 | 43 202 | 45 | 112 42 112 42 112 093 0.9 093 1.00
cmi51a 4 14| 34 10 558 24 | 3 10 34 10 34 071 1.00 0.42 1.00
B12 g2 54| 7F |53 97 54 | &3 5 77 51 83 0.94 095 094 1.00
e 3 7| 33 6 23 18 33 5 33 5 33 071 053 0.2a 1.00
cm150a 78 08 | 33 06 3@ o 3@ 5 52 5 32 0.56 083 025 1.00
e 223 106 220 106 237 108 | 247 107 | 220 106 220 1.00 1.00 098 0.99
cmiG2a 49 |37 | 48 |37 B2 39 54 a7 45 37 48 1.00 1.00 095 1.00
P 46 | ¥ | 42 | M 55 34 42 3 42 3 42 1.00 1.00 081 1.00
cmd2a s0 40| s0 40 S0 40 | 50 40 50 40 50 1.00 1.00 1.00 1.00
mmeda 962 (135 550 136 2973 141 | 550 136 550 136 550 0.9 1.00 0.95 1.00

Gain Factar in % 0.36 065 026 .90

Table 4 illustrates the benchmark results columns 5 and 6. The gain factors of each method

comparison with the previous work done in''*'?!, It can
be inferred that the proposed method improves the APL
in 100% of the benchmarks compared to [16], which
uses three different algorithms, mainly bottom-up, top-
down and middle-way, with the initial heuristic variable
ordering. The proposed method was able to achieve
improvement in the APL for 70% of the benchmarks
compared to!'*, which uses dynamic variable ordering
technique. Benchmarks 5xpl, f51m, Z4ml, cm85a,
cml62a, cml63a, mux and cml50a proved to be
gaining the maximum from the proposed method. In
general the proposed method provides far better results
than the method in''® and gives more competitive

results than the method based on dynamic ordering
. [14]
in"".

Memory size of BDD: For each BDD the memory size
is computed using the equation (4) and tabulated in
Table 5. In this Table columns 2, 3 and 4 illustrate the
memory size obtained for the same three CUDD
reordering methods that were used before. The memory
size needed for the BDD construction using the
proposed method and the minimum memory size
resulting from the use of all four methods are given in

527

against the minimum memory size are given in columns
7,8, 9 and 10.

It can be inferred that the proposed method
managed to achieve the minimum memory size for 58%
of the circuits against other reordering methods, which
were mainly designed for the optimization of BDD
size.

Longest path length: In Table 6, columns 2, 4 and 6
illustrate the results obtained for three CUDD variable
reordering methods, namely the swapping, symmetric
sifting and window permutation in terms of number of
nodes and columns 3, 5 and 7 show the results for the
same in terms of LPL. The results shown in columns 8
and 9 are from the implementation of our proposed
method in terms of the number of nodes and the LPL
respectively. The minimum LPL size out of all the
methods is given in column 10 and the gain factors of
the proposed method against the three CUDD methods
are given in columns 10 to 12.

The obtained results indicate the efficiency of the
proposed method compared to other CUDD methods in
terms of minimum LPL. In general, the obtained results
indicate that the proposed method managed to minimize

J. Computer Sci., 1 (4): 521-529, 2005

the LPL for more than 90% of the benchmarks
compared to the efficiency of 37, 27 and 63% of
Swapping, Window Permutation and Symmetric Sift
reordering methods respectively. On the other hand,
when the limitations of BDD nodes are set, the
proposed method can achieve a maximum reduction in
both the number of nodes and the LPL of 53% of the
BDDs compared to 10, 13 and 56% for Swapping,
Window Permutation and Symmetric Sift respectively.
Benchmark circuits i1, i6, 17, X2, Apex4, B9, Z4ml,
clip, B12, mux and cm150a lead to a maximum gain
with the proposed algorithm compared to all three
CUDD methods. Benchmark circuits X4, cc, squar5,
misex2 and cm151a achieve better gain than two of the
CUDD methods and circuits alu2, decod, 5xpl, sao2,
cm85a, cml62a and cml63a lead to equally good
results compared to CUDD methods.

In general, the proposed method gives a higher
probability of achieving the minimum path length for
most of the medium scale IASTED benchmark circuits.
The minimization of the APL and the LPL leads to
circuits with a smaller depth in the paths from Root to
Terminal nodes. On the one hand this will lead to
optimize the circuit for speed and on the other hand
reduce the number of very long paths. Since the path
length is directly related to the evaluation time of logic
design, the above results prove that the proposed
method minimizes the evaluation time and the space
complexity of the circuit, which will eventually
minimize the cost of the design.

CONCLUSION

A new algorithm for minimizing the evaluation
time in BDD has been developed. The algorithm has
been implemented using ISCAS benchmark circuits and
the results have been compared with the three CUDD
reordering methods and two of the available methods
for path length minimization. Experimental results
indicate that this algorithm is promising, yielding better
results than more mature reordering techniques for
most of the benchmark circuits. Even though most of
the minimization methods use dynamic variable
ordering technique, the above results proved that the
static ordering techniques, too, could lead to some
competitive results for path length minimization. It is
also quite clear that the minimization of the evaluation
time of BDDs can improve the performance of the
circuit and have a strong influence on the quality of the
final implementation. Our future work and
developments will concentrate on investigating the

APL and LPL minimizations for larger scale
benchmark circuits.
ACKNOWLEDGEMENT

The authors would like to extend their thanks to
Professor Nazar M. Zaki from the College of

528

Information Technology at the United Arab Emirates
University and to the English Department at the
American University College of Technology for their
valuable comments to improve the quality of this paper.

REFERENCES

Bryant, R.E., 1986. Graph-based algorithm for
boolean function manipulation. IEEE Trans.
Comp., 35: 677-691.

Akers, S. B., 1978. Binary decision diagram. IEEE
Trans. Comp., 27: 509-516.

Priyank, K., 1997. VLSI logic test, validation and
verification, properties & applications of binary
decision diagrams. Lecture Notes, Department of
Electrical and Computer Engineering University of
Utah, Salt Lake City.

Ingo, W., 1987. Complexity of Boolean Function.
John Wiley & Sons Ltd and B. G. Teubner,
Stuttgart.

Prasad P.W.C. and A.K. Singh, 2003. An efficient
method for minimization of binary decision
diagrams. Proceedings of 3™ Int. Conf. Advances
in Strategic Technologies, pp: 683-688.

Rudell, R., 1993. Dynamic variable ordering for
ordered binary decision diagrams. Proc. Intl. Conf.
Computer Aided Design (ICCAD), pp: 42-47.
Ebendt, R., 2003. Reducing the number of variable
movements in exact BDD minimization. Proc.
2003 Int. Symp. Circuits and Systems, pp: 605-
608.

Aloul, F.A., .L. Markov and K.A. Sakallah, 2000.
Improving the efficiency of circuit-to-BDD
conversion by gate and input ordering. 20th Intl.
Conf. Comp. Design, pp: 64-69.

Harlow, J.E. and F. Brglez, 2001. Design of
experiments and evaluation on of BDD ordering
heuristics. Intl. J. Software Tools for Technol.
Transfer., 3: 193-206.

Aloul, F., 1. Markov and K. Sakallah, 2005.
MINCE: A Static Global Variable-Ordering
Heuristic for SAT Search and BDD Manipulation.
To appear in Journal of Universal Computer
Science (JUCS).

Fujita, M., H. Fujisawa and N. Kawato, 1988.
Evaluation and improvements of boolean
comparison method based on binary decision
diagrams. Proc. Intl. Conf. Computer Aided
Design (ICCAD), pp: 2-5.

Malik, S., A. Wang, R. Brayton and A.
Sangiovanni-Vincentelli, 1988. Logic verification
using binary decision diagrams in a logic synthesis
environment. Proc. Intl. Conf. Comp. Aided
Design (ICCAD), pp: 6-9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

J. Computer Sci., 1 (4): 521-529, 2005

Somenzi, F., 2001. Efficient manipulation of
decision diagrams. Intl. J. Software Tools for
Technol. Transfer, (STTT), 3: 171-181.

Nagayama, S., A. Mishchenko, T. Sasao and J.T.
Butler, 2003. Minimization of average path length
in BDDs by variable reordering. Intl. Workshop on
Logic and Synthesis, pp: 207-213.

Ebendt, R., S. Hoehne, W. Guenther and R.
Drechsler, 2004. Minimization of the expected
path length in BDDs based on local
changes. Proc. Asia and South Pacific
Design Automation Conf. (ASP-DAC’2004), pp:
866-871.

Liu, Y., K.H. Wang, T.T. Hwang and C.L. Liu,
2001. Binary decision diagrams with minimum
expected path length. Proc. DATE 01, pp: 708-
712.

Fey, G., J. Shi and R. Drechsler, 2004. BDD circuit
optimization for path delay fault-testability. Proc.
EUROMICRO Symp. Digital System Design, pp:
168-172.

Nagayama, S. and T. Sasao, 2004. On the
minimization of longest path length for decision
diagrams. Intl. Workshop on Logic and Synthesis
(IWLS-2004), pp: 28-35.

Balarin, F., M. Chiodo, P. Giusto, H. Hsieh, A.
Jurecska, L. Lavagno, A. Sangiovanni-Vincentelli,
E.M. Sentovich and K. Suzuki, 1999. Synthesis of
software programs for embedded control
applications. IEEE Trans. CAD., 18: 834-849.
Lindgren, M., H. Hansson and H. Thane, 2000.
Using measurements to derive the worst-case
execution time. 7th Intl. Conf. Real-Time Systems
and Appl. (RTCSA’00), pp: 15-22.

Nagayama, S. and T. Sasao, 2004. On the
minimization of longest path length for decision
diagrams. Intl. Workshop on Logic and Synthesis
(IWLS-2004), pp: 28-35.

529

22.

23.

24.

25.

26.

27.

28.

29.

30.

Shelar, R.S. and S.S. Sapatnekar, 2001. Recursive
bipartitioning of BDD's for performance driven
synthesis of pass transistor logic. Proc. [IEEE/ACM
ICCAD, pp: 449-452.

Bertacco, V., S. Minato, P. Verplaetse, L. Benini
and G.D. Micheli, 1997. Decision diagrams and
pass transistor logic synthesis. Stanford University
CSL Technical Report, No. CSL-TR-97-748.
Drechsler, R. and B. Becker, 1998. Binary
Decision Diagrams Theory and Implementation.
Kluwer Academic Publishers.

Drechsler, R. and D. Sieling, 2001. Binary
Decision Diagrams in Theory and Practice.
Springer-Verlag Trans., pp: 112-136.

Prasad, P.W.C., A. Assi, M. Raseen and A. Harb,
2005. BDD minimization based on minimal
cumulative sub-functions complexity. Proc. Intl.
Conf. Research Trends in Science and Technology,
Lebanon.

Prasad, P.W.C., M. Raseen and S. Sasikumaran,
2005. Delay minimization in pass transistor logic
use of binary decision diagram. Accepted for
Presentation in 2nd Intl. Conf. Inform. Technol.,
(ICIT 2005), Jordan.

Somenzi, F., 2003. CUDD: CU Decision Diagram
Package. ftp://vlsi.colorado.edu/ pub/.

Yang, S., 1991. Logic Synthesis and Optimization
Benchmarks User Guide Version 3.0. Technical
report. Microelectronic Centre of North Carolina,
Research Triangle Park, NC.

Hansen, M., H. Yalcin and J.P. Hayes, 1999.
Unveiling the ISCAS-85 benchmarks: A case study
in reverse engineering. IEEE Intl. J. Design and
Test, 16: 72-80.

