Journal of Computer Science 1(2}: 137-144, 2005
ISSN 1549-3636
© Science Publicaticns, 2005

Exploring the Relationship between Cohesion and Complexity

LCara Stein, ’Glenn Cox and *Letha Etzkorn
"Mathematics and Computer Science Department, Edinboro University of Pennsylvania
*Computer Science Department, The University of Alabama in Huntsville
Sampson Gholston, Shamsnaz Virani, Phil Farrington, Dawn Utley, Julie Fortune
ISE Department, The University of Alabama in Huntsville, USA

Abstract: Many metrics have been proposed to measure the complexity or cohesion of object-oriented
software. However, the complexity or cohesion of a piece of software is more difficult to capture than
these metrics imply. In fact, studies have shown that existing metrics consistently fail to capture
complexity or cohesion well. This study explores the reasons behind these results: cohesion is difficult
to capture from syntactic elements of code, complexity is too multi-faceted to be captured by one
metric and the qualities of complexity and cohesion are not independent. These factors have resulted in
metrics that are purported to measure complexity or cohesion but are inadequate or misclassified. This
study shows that there is overlap between some of the complexity and cohesion metrics and points to a
more basic relationship between complexity and cohesion: that a lack of cohesion may be associated

with high complexity.

Key words: Scftware Metric, Complexity, Cohesicn, Object-oriented

INTRODUCTION

Software metrics can be useful to preject managers and
software development feams in assessing software.
Metrics can be calculated automatically from source
code, providing an indicaticn of which classes may be
error-prone. For example, code that is lacking in
cohesion is likely to be poorly designed and therefore
more error-prone [1]. Although metrics do not provide
a perfect analysis of a class or functicon, they provide a
Tast, inexpensive way to get feedback on various
aspects of the quality of a class. Since software follows
the Pareto principle or 80/20 rule (that is, most of the
errors are in a small portion of the code) [2], metrics
can provide valuable information without being perfect.
Metrics can be used as one source of information
suggesting error-prone segments of code. Little effort is
expended in cellecting metrics with an automated
mefrics toel and if they correctly pinpoint a few
modules as error-prone, there is a good chance that
many of the system errors reside in those modules.
Complexity and cohesion are qualities of software that
are often used to try to find error-prone modules. The
reasoning is that modules that lack cohesion are poorly
designed and complex moedules are difficult to
implement and difficult to test completely [1].Both of
these conditions lead to an increased likelihood of
errors in a system. Although studies have shown a
relationship between complexity metrics and faults [3-7],
studies have failed to show a significant relationship
between cohesion metrics and faults or changeability
[8-11].

137

One possible explanation for the lack of correlation
between cohesion metrics and fault-proneness is the
difficulty of measuring cchesion from source code.
Briand et al. said that syntactic metrics do not capture

cohesion information well [8, 10]. Allen and
Khoshgoftaar [12] define cohesion as the degree of
intra-module interdependence; Yourden and

Constantine define it as “how tightly bound or related
[a module’s] internal elements are to one another™ [13].
Henderson-Sellers suggests that meaning is more
important te cchesion than syntax is [14]. He gives an
example of two classes, Person and Car, each with high
semantic and syntactic cohesion. If each person can
own only one car and each car can be owned by only
one person, these classes could be merged and still have
a high degree of syntactic cohesion, but the Person-Car
class is not cohesive conceptually [14]. Metrics based
only on syntax miss semantic cohesion enftirely.

Although complexity seems like an obvious concept, it
is even less well defined than cohesion. As Fenten [15]
and Curtis and Carleton [16] noted, no one measure can
fully capture software’s complexity. Curtis and
Carleton observed that most complexity metrics
actually measure size. In fact, the most popular
complexity metrics, McCabe’s Cyclomatic Complexity
and Halstead’s Effort, have a strong correlation with
lines of code and perform no better than lines of code in
predicting software quality [16]. In actuality,
complexity encompasses much more than just size.
Complexity is also influenced by the psychological
tendencies and experience of an individval
programmer: a task that is very complex to one

J. Computer Sci., 1 (2): 137-144, 2005

programmer may be very familiar and thus very easy
for another [16]. Tegarden, er al.,[17] list three types of
psvchological complexity that impact programmers:
problem complexity, system design complexity and
procedural complexity. Genzalez expressed complexity
as a three-dimensional matrix involving three types of
complexity: syntactical, functional and computational;
three dimensions of complexity: length, time and
level/depth; and five domains of complexity: control
structure, size of code, information content, modularity
and data structure [18]. One step beyond Gonzalez’s
information content factor, Henderson-Sellers [14] said
that semantic cohesion is actually one aspect of
software complexity. These assertions begin to indicate
a relationship between complexity and cohesion. More
generally, it is plausible that software that is less
cohesive (poorly designed or containing many unrelated
ideas) should be more complex {make use of a larger or
more elaborate implementation, be more difficult to
implement).

MATERIALS AND METHODS

To analyze the relationships between cohesion and
complexity, a variety of complexity and cohesion
meirics were calculated. We analyzed two types of
metrics: syntactic metrics and semantic mefrics.
Syntactic metrics are based on cede syntax. On the
other hand, semantic metrics quantify the meaning of
the task performed by a piece of software, using a
knowledge base of domain-related concepts and
keywords.

Some mathematical notation is necessary.

Let {Cy, Co, ..., Cp} be the set of m classes in a system.
Let F, = {F,1, Fa, Fan} be the set of n member functions
belonging to class C,. Let A, = {Au, Awp, .., Ay} be
the set of attribute variables belonging to class C,.

Let # be a mapping from set F, to set A, such that F; #
A, if function [, uses atfribute A, in its
implementation. Let 8§ be a relation on set F, such that
Fy 6 Fyif 3xe A_(F_#x AF_ #X), that is, if the
two functions share a common atiribute variable.
Bieman and Kang [19] refer to this as a direct
connection.

For each class C,, let K, be the set of domain-related
keywords associated with class C, and let O, be the set
of domain-related concepts associated with C,. The
domain-related concepts and keywords are part of the
calculation of semantic metrics [20, 21]; in calculating
these metrics, concepts and keywords are associated
with classes and functions using a knewledge base of
domain information. Definel, =K, WO, we will
refer to this as the set of ideas associated with
class C, Let R, be the setof conceptual relations
(as defined by Sowa [22]} connected from any concept
in O, to any other concept in the knowledge base.

138

For each member function By, let K, be the set of
keywords associated with Fy, let Oy be the set of

concepts associated with F; and let I, =K _ WO

be the set of ideas associated with F,.

Let O be the set of all concepts in the knowledge base.
Then define mapping % from set R, to set O such that
for any r in R, and any x in O, r%x if and only if r
forms a connection from concept X to any concept v in
set O or r forms a connection from any concept z in set
O to concept X. Let — be a relation between concepts p
and g in set O such that p — qif and only if there exists
a conceptual relation from p to q. Let ¢; be the number

of times idea 1€ I is inferenced.

Let S*, =[s1, 85, , sx] be the bag of X name strings used
in the definition of class C,, where a name string is any
user-defined identifier name, such as a class name,
variable name, functicn name, or parameter name. Let
S, be the set of unique elements in bag 5*,. Let uy be
the frequency with which name string s; occurs in the
definition of class C,. Similarly, let §*;=[s;, 85, ..., 8]
be the bag of y name strings used in the definition of
member function F,; of class C,. Then S, is the set of
unique elements in bag S*; and uy is the frequency
with which string sy occurs in the implementation of
function F.

Let Majbe the McCabe’s Cyclomatic Complexity of

function Fy.

Using these definitions, the metrics are defined in
Table 1.

Values for the mefrics were calculated from three
graphical user interface {(GUID) systems written in C++:
Gina [23], wxWindows [24] and Watsen [25]. Gen++
[26] was used to calculate WMC, DIT and LCOM;
HYSS [27] was used to calculate LCOM1, LCOM?2,
LCOM3, LCOM4, LCOMS, LCC and TCC; Cantata++
[28] was used to calculate McCabe WMC, Bansiva
CDE and Bansiya CIE; and semMet [29] was used to
calculate CDC, SCDEa, LORM and PSI.

To provide a basis for comparison, two teams of experts
also analyzed the same software packages and rated the
cohesion and complexity of each class. Expert Team 1
consisted of seven software developers, each with five
to fifteen years’ experience in software development
and at least three years’ experience with C++ and GUI
programming. Fach expert had a BS in computer
science or electrical engineering and all but cne had a
master’s degree. These experts analyzed a set of 17
classes from the Gina and wxWindows systems chosen
to make a minimal windowing system [30]. Expert
Team 2 consisted of the students in a graduate-level
software engineering course. Most of these experts had
at least a vear of experience in software development
and all had prior object-oriented programming
experience, especially C++. This team analyvzed 13
classes taken from the wxWindows system to make a
minimal windowing system [30].

J. Computer Sci., 1 (2): 137-144, 2005

Table 1: Metric Definitions

Metric Definificn Source

Semantic Complexity Metrics

CDC s [(1+ |{x HosXAXe Oa}|]* W,) , where w; 1s the weighting factor for concept i [20]

0,
SCDEa SCDEa= [30]
- i —log,
ek, qu qu

Syntactic Complexity Metrics

WMC WMC= ‘Fa‘ {as calculated by Gen++) [33, 34]

McCabe |5 [33, 35]

WMC MecCabe WMC = Z M,

i=1

Bansiva CDE = 530 u, u, [36, 37]

CDE 2 |Sjl°g2[st

Bansiya (AR u [36]
CIE=- 4

> |

DIT The depth of the class in the inheritance hierarchy. In the case of multiple [33, 34]
inheritance, choose the largest of these values for the class.

Semantic Cohesicn Metrics

LORM H(F FIE, F eF AdreR, (r%parhgapel, apel, aqel Aqel,)} [20]

[EI(E]-1)
2
PSI | . | [21]
xI13i,jHxel, Axel,
{ (.0 J)} for 1 €1, j, k < IF,l, or 0if Vi{I, =)
’{y 1 Tk(ye L,)}’

Syntactic Cohesion Metrics

LCOM P ={(x,y)Ix,ye E AVA, {(-x#A, voy#A,)} LCOM =PI [34]

LEOMI pr_ f(x,7) Ix,ye B, AX 2 Y AVA, (—x#A, voy#A,)} LCOMI = P’ [38]

LCOM2 P’ = {(x,y)Ix,ye E Ax#yAVA, {(—x#A,; voy#A,)} [35]

Q ={(x,y)Ix,ye F Aax=yAadA, (x#A, Ay#A,)} LCOM2 = IP’I - 1Q'l, or O if
Q1 1P’

LCOM3 . = (V. E.) is an undirected graph with vertices V, = F, and edges E, = [39, 40]
{x,y)1x,ye F, A9A (x#A, Ay#A_ J)JLCOM3 = the number of connected
components of G,

LCOM4 G/=(V,, E,» is an undirected graph with wvertices V, = F, and edges
E={x,v)Ix,ye E ATA (x#A, Av#A, JU{(w,2)l w,ze F, Aw 1y z} LCOM4=the number of connected
components of G, [39]

LCOM> 38

Z‘{x\xeF Ax#A) [38]
\A s
F|-1
LCC LOC=[{{R B)RR, IV (FRF e B, (B8R ARSE, A A3,)] [19]
E{E[-1
2
TCC (9]

GRALES
E[(F|-1}
2

139

J. Computer Sci., 1 (2): 137-144, 2005

Table 2: Metric Correlations with Expert Cohesion Ratings

Expert Team 1 Expert Team 2

Metric Correlation p-value Statistically Correlation p-value Statistically
Significant Significant
{ =0.10) { =0.10)

Semantic Complexity Metrics

CDC -0.71 0.002 v -0.93 <0.001 v

SCDEa -0.67 0.005 v -0.83 0.001 v

Syntactic Complexity Metrics

WMC -0.80 0.004 v -0.87 0.001 v

McCabe WMC -0.62 0.013 v -0.82 0.001 v

Bansiva CDE -0.87 <0.001 v -0.73 0.005 v

Bansiya CIE -0.86 <0.001 v -0.71 0.007 v

DIT -0.03 0.913 0.45 0.119

Semantic Cohesion Metrics

LORM -0.64 0.008 v -0.90 <0.001 v

PSI -0.28 0.291 -0.77 0.003 v

Syntactic Cohesion Metrics

LCOM -0.44 0.104 -0.58 0.062 v

LCOMI1 -0.51 0.043 v -0.51 0.094 v

LCOM2 -0.30 0.048 v -0.48 0.112

LCOM3 -0.30 0.046 v -0.39 0.214

LCOM4 -0.51 0.044 v -0.46 0.137

LCOMS -0.40 .157 -0.41 0.239

LCC .40 0.202 (.49 .155

TCC -0.25 (0.349 0.04 (0.893

In corder to assess the relationships between complexity
and cohesion metrics, we perform statistical tests using
correlation. Correlation values range from -1.0 to 1.0,
To help understand correlations, Cchen [31] and
Hopkins [32] proposed the following scale for
correlation magnitude:

<(.1 trivial

(.1-0.3 minor

0.3-0.5 moderate
(.5-0.7 large

0.7-0.9 very large
(0.9-1.0 almost perfect

For each experiment, Pearson’s correlation coefficient
was used. The null and alternate hypotheses were:

H,: There is no correlation between the two variables
{ =0
H;: There is a correlation between the two variables

o

In these experiments, rejecting the null hypothesis
indicates that there is a statistically significant
relationship between the two quantities being studied,
for example, a metric and an expert team’s assessment
of cohesion.

Since the metrics being studied are calculated at the
class level (that is, each metric produces one value per

class in an object-oriented software system}, the
experimental unit for each experiment is a class.

We present correlations among metrics and experts’
ratings of complexity and cchesion, showing
considerable crossover between the two groups of
metrics. Then we present a principal component
analysis of a large set of complexity and cchesion
metrics, showing that all of the complexity, cohesicn
and unclassified metrics studied measure a total of only
five different qualities of software.

RESULTS

Metrics vs. Expert Cohesion Ratings: First we
compared the complexity and cohesion metrics to the
experts’ assessments of cohesion. Table 2 shows the
results of this analysis. The table shows that there is a
very strong negative correlation between the expert’s
assessment of cohesion and most of the complexity
metrics {(CDC, SCDEa, WMC, McCabe WMC and
Bansiva CDE and CIE}. In fact, many of the
complexity metrics actually correlate more strongly
with the expert assessments of cohesion than do the
cohesion meftrics.

For Expert Team 1, all of the complexity metrics, with
the exception of McCabe WMC and DIT, correlated
better with the expert assessment than did any of the
cohesion metrics. The best correlation was found for
Bansiya’s CDE and CIE complexity mefrics, which had

J. Computer Sci., 1 (2): 137-144, 2005

Table 3: Metrics vs. Expert Complexity Ratings

Expert Team 1 Expert Team 2

Metric Correlation p-value Statistically Correlation p-value Statistically
Significant Significant
{ =0.10) { =0.10)

Semantic Complexity Metrics

chcC -0.53 0.033 v -0.67 0.018 v

SCDEa -0.55 0.029 v -0.75 0.005 v

Syntactic Complexity Metrics

WMC -0.18 0.562 -0.31 0.310

McCabe WMC -0.51 0.050 v -0.71 0.007 v

Bansiyva CDE -0.50 0.058 v -0.65 0.016 v

Bansiva CIE -0.56 0.031 v -0.71 0.006 v

DIT -0.18 0.524 -0.05 0.866

Semantic Cohesion Metrics

LORM -0.64 0.008 v -0.68 0.015 v

PSI -0.19 0.478 -0.38 0.225

Syntactic Cohesion Metrics

LCOM -0.03 (.929 -0.16 0.642

LCOM1 -0.33 0.212 -0.45 0.138

LCOM2 -0.34 0.200 -0.45 0.144

LCOM3 -0.52 0.040 v -0.58 0.046 v

LCOM4 -0.61 0.013 v -0.63 0.029 v

LCOMS -0.47 (.088 v -0.24 0.496

LCC -0.19 0.560 -0.10 0.791

TCC -0.28 0.286 -0.44 (.149

correlation coefficients of -0.86 and -0.87, respectively.
By comparison, the strongest correlation between a
cchesion mefrics and the experts was -0.64 for the
LORM semantic metric.

Similar results were obtained for Expert Team 2. The
CDC complexity mefric had a nearly perfect correlation
(-0.93) with the expert assessments of cohesion, slightly
better than the best cohesion metric, LORM {-0.90). In
fact, all of the complexity metrics had a better
correlation with the experts than any of the cohesion
metrics, with the exception of the twe semantic
cohesion metrics, LORM and PSI.

These findings indicate that there is a strong negative
correlation between the quantities measured by
complexity metrics and the cohesion of a class.
Although this idea is not cbvious, it is plausible that the
more complex a class is, the more tasks it includes, so
there is an increased likelihood that seme of those tasks
are unrelated causing reduced cohesion.

To investigate one example, the CDC and SCDE
mefrics can be considered. Both metrics are based on
the number of ideas in a class. CDC counts the ideas
and multiplies them by a weighting factor; SCDE uses
the number of ideas and how many times they were
inferenced. In light of this, it is plausible that the CDC
and SCDE mefrics would be measures of lack of
cchesion (indicated by the negative correlation). The
more ideas are in a class, the higher these metrics’
values will be, At the same time, the more ideas are in a
class, the less likely it is that the class accomplishes

141

only one unified task in the domain. The implication is
that the larger the number of ideas that are present in a
class, the less cohesive the class is likely to be. This is
the relationship shown in the results of this experiment.
However, this does not explain the streng relatienship
between WMC and the experts” cohesion ratings. WMC
in this experiment is the version calculated by Gen++
[26]: each method is assumed to have a complexity of
one. Therefore, this version of WMC is the same as
simply counting the member functions in a class.
Combining the findings from the semantic
metrics and WMC, we see that a class
containing more ideas and more functions is less
cohesive. This conclusion is consistent with the
definition of cohesion.

Metrics vs. Expert Complexity Ratings: Given the
remarkable performance of the semantic complexity
metrics as measures of lack of cohesion, we wondered
if there might be a correspondingly large relaticnship
between the cohesion metrics and the experts’
assessment of complexity. Results of correlating the
two sets of data {Table 3) do show a few significant
correlations (it should be noted that because the expert
teams rated complexity on a decreasing scale -- “not
complex” = 1.00, “fairly complex” = 0.50 and “very
complex” (.00 --conventional complexity metrics
have an negafive correlation with the expert results.}
For example, the LORM and LCOM4 cohesion metrics
correlate with the experts’ complexity assessments with
correlation ceefficient magnitudes in the range 0.6 to

J. Computer Sci., 1 (2): 137-144, 2005

0.7. However, the majority of the cohesion metrics
show only weak correlation with the expert complexity
assessments.

This result indicates that the implication of the first
analysis — that if the complexity metric of a class is
high {low}, the class will have a low (high) cohesion —
cannct be reversed. That is, high (low) cchesion
meftrics de not imply low (high} complexity. This result
is reasonable in light of the fact that low class cohesion
can result from many factors that do not relate to high
complexity. For example, if a class contains only two
functions that are not related, the cohesion will be low,
while most complexity assessments would show low
complexity due to the small size of the class.

Pair-wise Correlation of Cohesion and Complexity
Metrics: To further investigate the relation between
complexity metrics and cohesion, we performed a pair-
wise correlation of the cohesion and complexity
metrics. For this analysis, the mefric values were
calculated for classes taken from the wxWindows and
Gina GUI suvites. The number of classes used to
calculate the individual metrics ranged from 34 to 360
with a mean of 137 classes.

Table 4: Cohesion Metrics Correlated with Complexity

Metrics
Complexity
5}
= wl
=l 8| &
i i g =
ol g gl ¢l g gl -
ol ol =1 = gl &l &
LCORM 0.30]-- 0.27]-- 0.29] 0.33]--
PSI 0.45]-- 0.55]-- 0.48] 0.49]--
LCCM 0.15]-- 0.44]-- 0.34] 0.30]--
5 LCCM1 0.26]-- 0.77] 0.31] 0.38] 0.41]--
'g:'; LCCOM2 0.25]-- 0.61]-- 0.29] 0.34]--
= |[LCOM3 0.34]-- 0.62]-- 0.41] 0.48] 0.27]
O |LCCM4 0.36]-- 0.52]-- 0.35] 0.43] 0.28
LCOM5 |- 0.27]— | 0.54] 0.28]-
[cC - - = |- |- |- 043
TCC 017- |- |- |- |- 0.40)

Table 5: Cchesion Metrics Correlated with Cohesion

Metrics
Cohesion

— o o2 ~t uy

= =l = =z = = =
o — =] ol © (@]]] ol ©
Sl = o o o o & o] o] ©
__| L __| __| __| | __| | =
LOHM 033014 - = AR AR - --
Psl 0.33 C16] Cd0|0ag) 048] 050G — - |c.28)
LM C.14] 016 036|028l 014) - - - --
g LCCOMA - | G40] 028 0S| oad 0B8] — 02038
2 LCOM2 - | 035|026 095 C8e) 053] - |6.28]0.30
< LCOM3 C11] 048] 014] 084 (086 0.88] - |0.32]C43
< |LCOM4 C14] G50] - |G51]|05a]0as - | G.2e]C.40
LECME -- -- -- -- - - - -3.48] .34
LCC -- -- - |oas|o2e|oaz|oze]-048 0.56)

TCC - |-0.22]-0158] - — — — - | G.se

The results of the pair-wise correlation analysis
between the cchesion and complexity metrics are
shown in Table 4 (for comparisen, the results of
correlating cohesion and complexity mefrics with others
of their own type are shown in Tables 5 and 6}. The

142

Table 6: Complexity Metrics
Complexity Metrics

Correlated with

Complexity

(]
=
=
CDC 0. 0.46] --
SCDEa 0.56 0.43] --
WMC 0.49] 0.43 0.24
McCabe WMC -- - | 0.24 -
Bansiya CDE 0.53]0.55| 0.80] 0.18 0.95] 0.18
Bansiya CIE 055[056[0.77] -- |0.95 0.33
DIT - | 0.30-0.41]-0.41]0.18] 0.33

IMcCabe WMC

olo
&|F|Bansiya CIE
D

0.30
0.77 |-0.41

=4 End b Bt
»| S| A SBansiya CDE

Complexity

Table 7: Principal Components

Principal Component
2 3 4 5

II__OHM i
PSI X
L GO X
LCOh1 X
LCOhi2

L COh3
LG4
LGOS

LCC

TCC

CcDC

SCDEa

WG
McCabe WMC
Bansiva CDE
Bansiya CIE
IDIT X

Cohesion

b bod

b ks o

Bt B I P B e

Complexity

values shown are those where results are statistically
significant (¢=0.10}; non-statistically-significant results
are indicated by “--".

As shown in Table 4, there are several instances in
which a cohesion and complexity metric correlate at a
“moderate” level or above, The WMC meftric, in
particular, correlates well with the majority of the
cohesion metrics {(PSI, LCOMI1-4}. There is alse goed
correlation between the Bansiva CDE complexity
metric and the LCOMS cohesion metric. (It should be
noted that the cohesion metrics analyzed here are “Lack
of Cchesion” metrics, having values that increase with
decreased cohesion. Thus, posifive correlation with the
complexity metrics is consistent with the results in the
previous section).

The pair-wise analysis shows that the concept of a
negative correlation between complexity metrics and
cohesion extends te some significant cohesion metrics.

Principal Component Analysis: Principal Component

Analysis (PCA} is a stafistical technique that
categorizes variables into groups based on the similarity
of what they measure. For instance, a metrics study
may include 50 complexity metrics, but those metrics
may only be measuring three different aspects of
complexity: psychological, control structure and size.
Each group, or Principal Component (PC), is said to
measure a different orthogonal dimension of the entity
being measured [10].

J. Computer Sci., 1 (2): 137-144, 2005

To further investigate commonalities between the
cohesion and complexity metrics, we conducted a
Principal Components Analysis. The PCA identified
the five Principal Components shown in Table 7. The
most important PC for this study is PC1 which includes
two of the cohesion metrics {LORM and PSI} as well as
the majority of the complexity metrics, The PCs
indicate that:

* LCOMS, LCC, TCC measure one kind of value,
whereas

* LCOM2-4 measure another kind of value and

LCOMI1-2 measure yet another kind of value,
while

* McCabe WMC and DIT measure yet another kind
of value

LORM, PSI, CDC, SCDEa, WMC, Bansiva CDE and
Bansiya CIE appear to measure similar features.

The PC analysis shows that, consistent with cur earlier
studies, complexity metrics can be used to measure
cchesion. The PC analysis further reveals that the
complexity mefrics are measuring the same kind of
cohesion as the semantic cohesion mefrics, LORM and
PSI. However, the complexity metrics are measuring a
different kind of cohesion than is measured by LCOMS,
TCC, LCC, LCOM1-4,

We note that McCabe WMC and DIT are also
measuring different features than are measured by the
other complexity metrics, WMC, Bansiva CDE and
CIE, CDC and SCDEa.; we also note that different
cohesion metrics seem to be measuring different kinds
of values. Further study is focusing on determining the
common factors addressed by the various metrics.

DISCUSSION

Our results support the idea that there is a relationship
between complexity and cohesion, basically that a lack
of cohesion is associated with high complexity. Some
metrics are clearly complexity metrics; cohesion
meftrics are much less concrete in their classification
and some metrics appear to be incorrectly classified.
We hope this study will provide a better understanding
of complexity and cchesion as measured by meftrics and
the relaticnship between them.

Although many have asserted that it is impossible for
one number or metric value to capture all aspects of
complexity, we feel that the approach taken by
Gonzalez [18] in using a model that combines many
aspects of complexity is a step in the right direction.
Perhaps new metrics that combine aspects of syntactic
and semantic complexity and cchesion will perform
better in predicting fault-proneness, effort and
changeability than current metrics.

143

ACKNOWLEDGEMENTS

The research in this study was partially supported by
NASA grants NAGS-12725 and NCC8-200,

REFERENCES

Pressman, R., 2001, Scoftware Engineering. 5™ ed.
McGraw-Hill, Boston.

Fenton, N. and N. Ohlssen, 2000. Quantitative
analysis of faults and failures in a complex
software system. [EEE Transactions on Software
Engineering, 26: 797-814.

Basili, V., L. Briand and W. Melo, 1996. A
validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software
Engineering, 22: 751-761.

French, V., 1995. Applying software engineering
and process improvement to legacy defense system
maintenance: an experience repert. Proceedings of
the 6™ International Symposium on Software
Reliability Engineering, pp: 34-39.

Khoshgoftaar, T. and J. Munscn, 1990. Predicting
software development errors using software
complexity metrics. [EEE J. on Selected Areas in
Communicaticns, 8: 253-261.

Ohlsson, N. and H. Alberg, 1996. Predicting fault-
prone software modules in telephone switches.
[EEE Transactions on Software Engineering, 22:
§86-894.

Subramanyam, R. and M. Krishnan, M., 2003.
Empirical analysis of CK mefrics for object-
oriented design complexity: implications for
software defects. [HEE Transactions on Software
Engineering, 29: 297-310.

Briand, L., I. Daly, V. Porter and J. Wust, 1998. A
comprehensive empirical validation of design
measures for object-coriented systems. Proceedings
of the 5™ International Software Metrics
Symposium, pp: 246-257.

Briand, L., J. Daly, V. Porter and I. Wust, 1998,
Predicting fault-prone classes with design measures
in object-oriented systems. Proceedings of the gt
International Symposium on Seoftware Reliability
Engineering, pp: 334-343.

Briand, L., J. Wust, J. Daly and V. Porter, 2000.
Exploring the relationships between design
measures and software quality in object-oriented
systems. I. Systems and Software, 51: 245-273.
Kabaili, H., R. Keller and F. Lustman, 2001.
Cohesion as changeability indicator in object-
oriented systems. Proceedings of the 5t European
Conference on Software Maintenance and
Reengineering, pp: 39-46.

Allen, E. and T. Khoshgoftaar, 1999. Measuring
coupling and cchesion: an information theory
approach. Proceedings of the 6™ Annual Software
Metrics Symposium, pp: 119-127.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

J. Computer Sci., 1 (2): 137-144, 2005

Yourdon, E. and L. Constantine, 1979, Structured
Design. Prentice Hall, Englewood Cliffs, NJI.
Henderson-Sellers, B., 1996, Object-Oriented
Metrics. Prentice-Hall PTR, Upper Saddle River,
NI

Fenton, N., 1994, Scftware measurement: a
necessary scientific basis. IEEE Transactions on
Software Engineering, 20: 199-206.

Curtis, B. and A. Carleton, 1994. Seven * two
software conundrums. Proceedings of the o
Internaticnal Metrics Symposium, pp: 96-105.
Tegarden, D., S. Sheetz and D. Monarchi 1995. A
software complexity model of object-oriented
systems. Decision Support Systems, 13: 241-262.
Gonzalez, R., 1995. A unified metric of software
complexity: measuring productivity, quality and
value. Journal of Systems Software, 29: 17-37.
Bieman, J. and B.K. Kang, 1995. Cohesion and
Reuse in an Object-Oriented System. Proceedings
of the ACM Symposium on Software Reusability,
pPp: 259-262.

Etzkorn, L. and H. Delugach, 2000. Towards a
Semantic Metrics Suite for Object-oriented Design.
Proceedings of the 34th Internaticnal Conference
on Technology of Object-Oriented Languages and
Systems, pp: 71-80.

Stein, C., L. Etzkorn, G. Cox, P. Farrington, S.
Ghelston, D. Utley and J. Fortune, 2004. A New
Suite of Metrics for Object-Oriented Software.
Proceedings of the 1* International Workshop on
Software Audit and Metrics, pp: 49-58.

Sowa, I., 1984. Conceptual Structures: Information
Processing in Mind and Machine. Addison-Wesley,
Reading, Mass.

Backer, A., A. Genau and M. Seohlenkamp, 2004
(last accessed). The Generic Interactive
Application for C++ and OSE/MOTTF, version 2.0.
Anonymous ftp at ftp.gmd.de, directory
gmd/ginaplus.

Smart, J. 2004 {last accessed).
http:iwww. wxwindows.org.
Watson, M., 1993. Portable GUI Development
with C++. McGraw-Hill, New York.

Devanbu, P., 1992, GENOA - A customizable,
language- and front-end independent code
analyzer. Proceedings of the International
Conference on Software Engineering, pp: 307-317.

wxXWindows.

144

27,

28,

29,

30.

31.

32.

33.

34,

35,

36.

37,

38,

39.

40,

Chae, H., Y. Kwon and D. Bae. A Cohesicn
Measure for Object-Oriented Classes. Software:
Practice and Experience, 30: 1405-1431.
Information Processing Ltd., 2004 (last accessed).
Cantata++ Technical Brief.
http:/fwww.qesltd.com/cantpp/canpp_th.pdf.

Stein, C., L. Etzkorn, S. Gholston, D. Utley and G.
Cox, 2004. Early Software Qualification through
Semantic Program Understanding. Submitted to
Intl. I. Computers and Applications.

Etzkorn, L., §. Gholston and W. Hughes, 2002. A
Semantic Entropy Metric. I. Software Maintenance
and Evolution, 14: 293-310.

Cohen, J., 1998. Statistical Power Analysis for
Behavioral Science. 2™ ed. Lawrence Erlbaum
Publishing, Mahwah, NJ.

Hopkins, W. 2004 {last accessed). A New View of
Statistics. http://www.sportsci.org/resource/stats.
Chidamber, S. and C. Kemerer, 1994. A Mefrics

Suite for Object Oriented Design. [EEE
Transactions on Software Engineering, 20:
476-493.

Chidamber, S. and C. Kemerer, 1991, Towards a
Metrics Suvite for Object Oriented Design.
Preceedings of the Conference on Object-Oriented
Programming Systems, Languages and
Applications, pp: 197-211.

McCabe, T. A Complexity Measure, 1976. [EEE
Transactions on Software Engineering, SE-2:
308-320.

Bansiva, I., C. Davis and L. Etzkorn, 1999. An
Entropy-Based Complexity Measure for Object-
Oriented Designs. Theory and Practice of Object
Systems, 5: 111-118.

Etzkorn, L., I. Bansiva and C. Davis, 1999. Design
and Complexity Metrics for OO Classes. J. Object-
oriented Programming, 12: 35-40.
Henderson-Sellers, B., 1996. Software Metrics.
Prentice Hall, Hemel Hempstead, UK.

Hitz, M. and B. Montazeri, 1995. Measuring
Coupling and Cohesion in Object-Oriented
Systems. Proceedings of the Internaticnal
Sympesium on Applied Corporate Computing.

Li, W. and S. Henry, 1993. Object-Oriented
Metrics that Predict Maintainability. J. Systems
Software, 23: 111-122.

