Review of *Pasteurella Multocida* Infections over a Twelve-Year Period in a Tertiary Care Hospital

Athanasia Christidou, Sofia Maraki, Zoe Gitti and Yiannis Tselentis
Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine
University Hospital of Heraklion, P.O. Box 1352, Heraklion 71 110, Crete, Greece

Abstract: The aim of this study was to present the epidemiological, clinical and microbiological data, as well as the management and the outcome of 13 patients with documented *Pasteurella multocida* infections, diagnosed in the University hospital of Crete, Greece, between 1993 and 2004. Most patients (62%) were >70 years of age. Respiratory tract infections were most commonly encountered (61.5%), followed by soft-tissue infections (30.8%) and septicemia (7.7 %). Underlying diseases included malignancies, bullous pemphigoid, mitral valve stenosis, coronary disease, chronic obstructive pulmonary disease and intracranial hemorrhage. Antibiotic sensitivity testing showed that all *P. multocida* isolates were susceptible to beta-lactams, quinolones, chloramphenicol, tetracycline and trimethoprim/sulfamethoxazole. Antibiotics were administered to all 13 patients and a clinical response was observed in 77% of them. The overall mortality rate was 23% (3/13) but only 15.4% (2/13) died from the infection. Although rare, *P. multocida* infections should be suspected in patients reporting animal exposure, particularly in those with chronic underlying diseases.

Key words: *Pasteurella multocida*, infections, zoonoses, Greece

INTRODUCTION

Pasteurella multocida, a Gram-negative coccobacillus, is a member of the normal flora of the upper respiratory and gastrointestinal tract of many domestic and wild animals[1]. Human infections due to *P. multocida* are strongly associated with animal exposure and usually involve soft-tissue sites after animal bites or scratches[2,3]. Respiratory tract infections and less frequently septicemia, endocarditis, meningitis, peritonitis, or other unusual types of infection due to this organism have also been described[4-8]. In this study we present 13 cases of *P. multocida* infection diagnosed in our hospital during a 12-year period.

RESULTS

Patients: Over the 12-year period of the study, 13 cases of *P. multocida* infection were diagnosed at our center. The data of the patients are summarized in Table 1. The male to female ratio was 10:3. With the exception of a 3.5 years old boy, all patients were adults. The mean age was 64.4 years (range 3.5-79 years) and 8 (62%) of the patients were older than 70 years.

Respiratory tract was the most common site of infection (5 cases with pneumonia, 3 with tracheobronchitis). Septicemia secondary to severe pneumonia and septicemia without any other primary infection was detected in two and one patient, respectively. Cellulitis was diagnosed in three patients. Two of them were scratched by cats, the first on the left leg and the second on the right forearm. The third one was presented with a *P. multocida* wound infection after an injury. The last patient, a 64-year-old woman who had lost her own teeth and substituted them with a denture, presented with an inflammation in the left mandibula on the gingiva with purulent exudate.
Table 1: Pasteurella multocida infections diagnosed between 1993 and 2004

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Sex</th>
<th>Age</th>
<th>Animal Exposure</th>
<th>Site of isolation</th>
<th>Infection</th>
<th>Underlying disease</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>55</td>
<td>Cat scratch</td>
<td>Right forearm</td>
<td>Wound</td>
<td>CBLL</td>
<td>Amoxicillin/clavulanic acid + Ceftiraxone + metronidazole</td>
<td>Recovered</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>78</td>
<td>Cat scratch</td>
<td>Blood</td>
<td>Septicemia</td>
<td>None</td>
<td>Cefuroxime + netilmicin</td>
<td>Recovered</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>77</td>
<td>Unknown</td>
<td>Blood + BAL</td>
<td>Pneumonia, septicemia</td>
<td>Mitral valve stenosis, Bowel Ca, Bullous Pemphigoid</td>
<td>Piperacillin/tazobactam + Pefloxacin</td>
<td>Died</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>79</td>
<td>Cat and dog</td>
<td>BAL</td>
<td>Pneumonia</td>
<td>None</td>
<td>Amoxicillin/clavulanic acid + metronidazole</td>
<td>Recovered</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>64</td>
<td>None (village)</td>
<td>Left mandible</td>
<td>Soft tissues</td>
<td>None</td>
<td>Amoxicillin/clavulanic acid + metronidazole</td>
<td>Recovered</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>48</td>
<td>Cat scratch</td>
<td>Left leg</td>
<td>Wound</td>
<td>None</td>
<td>Amoxicillin/clavulanic acid + metronidazole</td>
<td>Recovered</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>72</td>
<td>None (village)</td>
<td>BAL</td>
<td>Pneumonia</td>
<td>Injured during agricultural work</td>
<td>Amoxicillin/clavulanic acid + Cefuroxime</td>
<td>Recovered</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>76</td>
<td>None (village)</td>
<td>Sputum</td>
<td>Tracheobronchitis</td>
<td>Coronary disease</td>
<td>Amoxicillin/clavulanic acid + Cefuroxime</td>
<td>Recovered</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>75</td>
<td>Dog</td>
<td>Blood</td>
<td>Pneumonia, septicemia</td>
<td>Larynx Ca</td>
<td>Amoxicillin/clavulanic acid + Cefuroxime</td>
<td>Recovered</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>78</td>
<td>None (village)</td>
<td>Sputum</td>
<td>Tracheobronchitis</td>
<td>COPD</td>
<td>Amoxicillin/clavulanic acid + Cefuroxime</td>
<td>Recovered</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>72</td>
<td>None</td>
<td>Sputum</td>
<td>Tracheobronchitis</td>
<td>Prostatic Ca, Bone and lung metastasis Intracranial hemorrhage, craniotomy Injury</td>
<td>Meropenem</td>
<td>Died from his main disease</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>60</td>
<td>Unknown (village)</td>
<td>BAL</td>
<td>Pneumonia</td>
<td>None</td>
<td>Cefotaxime + metronidazole</td>
<td>Recovered</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>3.5</td>
<td>None (village)</td>
<td>Forehead</td>
<td>Wound</td>
<td>None</td>
<td>Cefotaxime + metronidazole</td>
<td>Recovered</td>
</tr>
</tbody>
</table>

P. multocida was isolated from the bronchoalveolar lavage (BAL) in 3 patients with severe pneumonia, from sputum in 3 patients with tracheobronchitis, from pus in 4 patients with local infections, from blood in 2 patients (one with pneumonia and the other with septicemia without any local infection) and from both blood and BAL in one patient with severe fatal pneumonia.

Underlying disease serving as predisposing factor for the development of *P. multocida* infection was present in 8 patients. Among them, 4 presented a kind of malignancy. Two patients suffered from solid tumors, one from chronic b-lymphocytic leukemia and another one had a history of bowel cancer successfully treated 9 years ago and a recent diagnosis of a bullous pemphigoid under treatment. Mitral valve stenosis, coronary disease, chronic obstructive pulmonary disease and intracranial hemorrhage with a craniotomy and celiotomy were the underlying diseases for the other 4 patients, respectively.

Treatment was successful in 10 cases. Among the three other patients with fatal outcome, a 77-year-old woman was admitted with severe pneumonia, developed ARDS and died within 20 hours, a 79-year-old man with a history of bullous pemphigoid was admitted with pneumonia and ARDS, was treated in the intensive care unit (ICU) where *P. multocida* was isolated from broncho-alveolar lavage in a concentration up to 10^5 cfu/ml and despite the appropriate therapy he died on the 11th day of multiple organ dysfunction syndrome and the third one was a 60-year-old man who was admitted with intracranial hemorrhage, underwent a craniotomy and celiotomy, was treated in the ICU where developed a *P. multocida* pneumonia on the 10th day and died after 7 days of his main disease. A period longer than 3 years separated these 3 fatal cases.

Regarding the animal exposure, only two of the patients developed the typical form of *P. multocida* soft tissue infection after cat scratches: a 48-year-old woman and a 55-year-old man admitted with cellulitis, developed purulent discharge on the left leg and the right forearm, respectively. Cat scratch was also the portal of entry for a 78-year-old man who was admitted with fever without any local infection and *P. multocida* was isolated from the blood. A retrospective epidemiological history revealed that he had three cats and two dogs at home and he had been scratched by one of his cats on his right forearm, one month ago. After local treatment the lesion healed completely and no signs of soft-tissue infection were present when the bacteremia appeared. A 72-year-old man with pneumonia had injured his left hand during agricultural work a month ago, but he denied any animal exposure. Two patients, one admitted with pneumonia and the other with pneumonia and septicemia owned a cat and a dog the first and a cat the second, but they did not reported bites or scratches. No epidemiological data were available for two fatal cases because of their crucial situation. The other 5 denied any known animal exposure although 4 of them lived in villages.

Bacteriology: All *P. multocida* isolates were similar in morphology, growth conditions, biochemical profile and antibiotic susceptibility. They were non-motile, gram-negative cocccobacilli, well grown on blood and chocolate agar but not onto MacConkey agar. Colonies on blood agar were grey and nonhemolytic with a distinctive mousey odor. They were catalase and oxidase positive and the API 20NE system identified them as *P. multocida*. They fermented glucose, xylose, mannitol and sucrose and presented a similar antibiotic susceptibility profile. They were susceptible to beta-lactams (amoxicillin, amoxicillin/clavulanic acid,
patients no. 5 who presented with soft tissue infection
unexpected site of infection among our patients: the
been reported. There was also a case with an
prosthetic valves
respiratory tract was unsurprisingly the most common
site of the infection (tracheobronchitis, 3; pneumonia,
most common site in
abscess
5). Unusual sites such as endocarditis in native or
organism is a commensal in mouth, throats, noses and
secretions are the major source of human infections
obvious animal exposure, it is believed that animal
commonly after animal bites and scratches
infections. Human
P. multocida
infections occur most
rates at 70-90% and 20-50%, respectively
This organism is distributed worldwide and is pathogenic in
many animal species, causing serious epizootic
infections. Human
P. multocida
infections occur most commonly after animal bites and scratches
However, several cases have been reported in patients
who denied any animal contact. Even without an
animal exposure, it is believed that animal
secretions are the major source of human infections.
Localized infection, secondary to a bite or scratch
from an animal, is probably the best-known form of
human infection. In our study, only two patients
developed this typical form. Respiratory tract is the
most common site in
P. multocida
infections unrelated
to traumatic animal contact. As the majority of our
patients were not associated with animal trauma, respiratory tract was unsurprisingly the most common
site of the infection (trancheobronchitis, 3; pneumonia, 5). Unusual sites such as endocarditis in native or
prosthetic valves, tonsillitis, periorcular abscesses
and utero infection in pregnancy have also been reported. There was also a case with an
unexpected site of infection among our patients: the
patient no. 5 who presented with soft tissue infection
with purulent discharge, localized on the gingiva of the
left mandible.
It is of interest the preference of this microbe to the
extreme ages. With the exception of a child, the
majority of our patients (8/13) were older than 70 years.
Serious systemic
P. multocida
infections may
develop with the presence of different underlying
diseases. Rheumatoid arthritis is associated with the
development of septic arthritis, liver dysfunction
with septicemia or peritonitis, craniofacial
operations with meningitis or intracranial abscesses
peritonial dialysis with peritonitis and chronic
respiratory disease such as bronchitis, emphysema, or
bronchiectasis may underlie in respiratory tract
infections. Diabetes mellitus, systemic lupus erythematosus, solid tumors and hematological malignancies
have also been described as underlying diseases in human
P. multocida
infections. Although
P. multocida
bacteremia is strongly associated with liver dysfunction none of our 3 bacteremic patients suffered of any liver disease. One
among them suffered from larynx Ca that is considered a predisposing factor for the infection. A kind of
malignancy was also present in other 3 patients.
Although susceptibility of human
P. multocida
isolates to beta-lactams is almost universal, beta-
lactamase production by some isolates has been
reported and thus susceptibility testing should always be performed. Susceptibility to tetracycline,
chloramphenicol and ciprofloxacin has been demonstrated, while inconsistent clinical results may be
found with aminoglycosides, erythromycin, clindamycin and vancomycin. The results of the antibiotic
susceptibility testing of our isolates demonstrated excellent in vitro susceptibility to beta-lactams,
chloramphenicol, trimethoprim/sulfamethoxazole, quinolones and tetracycline.

DISCUSSION

P. multocida infections in humans are well known
as animal derived infections (zoonoses), as this
organism is a commensal in mouth, throats, noses and
gastrointestinal tract of many domestic or wild animals
and birds. Cats and dogs have the highest carriage
rates at 70-90% and 20-50%, respectively. This
organism is distributed worldwide and is pathogenic in
many animal species, causing serious epizootic
infections. Human *P. multocida* infections occur most
commonly after animal bites and scratches. However, several cases have been reported in patients
who denied any animal contact. Even without an
obvious animal exposure, it is believed that animal
secretions are the major source of human infections.

Localized infection, secondary to a bite or scratch
from an animal, is probably the best-known form of
human infection. In our study, only two patients
developed this typical form. Respiratory tract is the
most common site in *P. multocida* infections unrelated
to traumatic animal contact. As the majority of our
patients were not associated with animal trauma, respiratory tract was unsurprisingly the most common
site of the infection (tracheobronchitis, 3; pneumonia, 5). Unusual sites such as endocarditis in native or
prosthetic valves, tonsillitis, periorcular abscesses and utero infection in pregnancy have also been reported. There was also a case with an unexpected site of infection among our patients: the patient no. 5 who presented with soft tissue infection with purulent discharge, localized on the gingiva of the left mandible.

It is of interest the preference of this microbe to the extreme ages. With the exception of a child, the majority of our patients (8/13) were older than 70 years.
Serious systemic *P. multocida* infections may develop with the presence of different underlying
diseases. Rheumatoid arthritis is associated with the development of septic arthritis, liver dysfunction
with septicemia or peritonitis, craniofacial operations with meningitis or intracranial abscesses, peritonial dialysis with peritonitis and chronic respiratory disease such as bronchitis, emphysema, or bronchiectasis may underlie in respiratory tract infections. Diabetes mellitus, systemic lupus erythematosus, solid tumors and hematological malignancies have also been described as underlying diseases in human *P. multocida* infections. Although *P. multocida* bacteremia is strongly associated with liver dysfunction none of our 3 bacteremic patients suffered of any liver disease. One among them suffered from larynx Ca that is considered a predisposing factor for the infection. A kind of malignancy was also present in other 3 patients.

Although susceptibility of human *P. multocida*
isolates to beta-lactams is almost universal, beta-
lactamase production by some isolates has been
reported and thus susceptibility testing should always be performed. Susceptibility to tetracycline,
chloramphenicol and ciprofloxacin has been demonstrated, while inconsistent clinical results may be
found with aminoglycosides, erythromycin, clindamycin and vancomycin. The results of the antibiotic
susceptibility testing of our isolates demonstrated excellent in vitro susceptibility to beta-
lactams, chloramphenicol, trimethoprim/sulfamethoxazole, quinolones and tetracycline.

Despite the susceptibility and the appropriate therapy, three of the patients died. Outcome is associated with the severity of the infection, the extent of the underlying disease and the early onset of the appropriate therapy. Mortality is found to be 30% in meningitis and increased mortality with increasing age has been observed. A mortality rate of 31% is reported in patients with bacteremia, with all fatalities occurring in patients with severe cirrhosis. Among our patients with fatal outcome, patient no. 3 died within 24 hours and the other two after prolonged treatment in the ICU.

Pasteurella multocida must be considered as the possible etiology for a variety of infections, especially
in patients reporting a history of animal exposure. Early and correct clinical and microbiological diagnosis will lead to the institution of the appropriate antibiotic treatment.

Table 2: MICs of antibiotics against 13 human isolates of *P. multocida*

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>MIC range (µg/ml)</th>
<th>Susceptible no (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin</td>
<td>0.125 – 0.75</td>
<td>100</td>
</tr>
<tr>
<td>Amoxicillin/lanulanic acid</td>
<td>0.125 – 0.75</td>
<td>100</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>0.023-0.094</td>
<td>100</td>
</tr>
<tr>
<td>Cefepime</td>
<td>0.012-0.125</td>
<td>100</td>
</tr>
<tr>
<td>Ceftriazone</td>
<td><0.016</td>
<td>100</td>
</tr>
<tr>
<td>Imipenem</td>
<td>0.125-2</td>
<td>100</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0.016-0.125</td>
<td>100</td>
</tr>
<tr>
<td>Ciprofloxacine</td>
<td>0.008-0.032</td>
<td>100</td>
</tr>
<tr>
<td>Norfloxacine</td>
<td>0.047-0.125</td>
<td>100</td>
</tr>
<tr>
<td>Sparfloxacine</td>
<td>0.003-0.012</td>
<td>100</td>
</tr>
<tr>
<td>Levofloxacine</td>
<td>0.008-0.032</td>
<td>100</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>0.38-0.75</td>
<td>100</td>
</tr>
<tr>
<td>Trimethoprim/sulfamethoxazole</td>
<td>0.008-0.125</td>
<td>100</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0.125-0.5</td>
<td>100</td>
</tr>
</tbody>
</table>
REFERENCES