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Abstract: Problem statement: This study presents an application of Indirect AdepGeneralized
Predictive Control (IAGPC) of an incubator for newb, in order to improve the performance of
temperature controApproach: Analysis of physical phenomena of incubator waslved together
knowledge of the dynamic behavior. Incubator waanidied by means of Recursive Least Square
(RLS) technique associated with a projection ofrtiadlel parameters for robust system identification.
Results: Results showed that mathematical model of neomatabator predicted coincide with the
measured data. A comparative study was made bet@Be®FF, PID and IAGPC control in order to
provide the performance of each stratgggnclusion: Results had proved effectiveness of the IAGPC
as a control of incubator system.

Key words. Neonatal incubator, temperature, identificatiomtonl, Recursive Least Square (RLS),
Generalized Predictive Control (IAGPC), transpidermrespiratory, physical
phenomena, heating resistance, Generalized Praglictintroller (GPC)

INTRODUCTION The modeling is to gather knowledge that has the
dynamic behavior of process, by analysis of physica
The First Published Report of an Incubator for usephenomena  involved. The study of system
in the care of the premature infant by Thoresl.  nonlinearities is considered as parametric uncestai
(1857) At this time, he had the idea to run a @aiihc  where the need for adaptive control. To do thishaee
called incubator, in which it was possible to mainta  achieved and implemented a control system basea on
constant heat and to keep the baby warm. Thereforgicrocontroller. In this study, an overview of the
temperature is one of the most important factoed th product was presented. After that, an incomplete
need to be maintained with minimum variation togkee physical model of the incubator shows the compjexit
the transpidermal respiratory and water loss to @f the process and the parametric model has been
minimum level and to increase the heat storage bodgeveloped. As a control, we opted for the Indirect
(Bachet al., 1999). At this time, the neonatal incubator Adaptive Generalized Predictive Control IAGPC, the
keeps the newborn or premature infants in a seitablcontrol law for the incubator is described and
atmosphere in terms of temperature, humidity andimulations examples are illustrated. Finally, a
oxygenation and thus protect, as much as possibte f comparative study was made between PID and ON-
external aggression as germs and noise. Thi®OFF and IAGPC control in order to show the
development is due to technological progress, seen performance of each strategy.
these last years. Furthermore, the current comalerci

devices use a classical control as the on-off d PI MATERIALSAND METHODS
control (Thomas, 1999). But this type of controkganot
always achieve the required performance: overshoot This application concerns an AIR-SHIELDS C100

undershoot in the air temperature (Siltaal., 2006; INCUBATOR located in Higher Institute of Medical
Rddy et al., 2009). The question remains if we use anTechnologies of Tunis.

advanced control strategy, we can be provide daitab | order to collect relevant data then to estinaee
environment for premature born infants and maietin Parameters of mathematical model and to test the

the temperature that is set by the doctor WIthoucontrol law, a system of identification and contweds

significant variation over time whatever disturbanc . . -
The purpose of the present study was to addre&onstructed. The system mainly consists of foutsuni

this question by generalized predictive controltiis  the incubator AIR-SHIELD chamber, the acquisition
case, a development of an accurate model is eakentiboard, the controller board and the computer.
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Fig. 1: The process of identification and contrdl o
heating in a premature infant incubator .

In Fig. 1 we based our design on a system able to
put our process in open-loop (modeling) or closmapl °
(control) (Zermaniet al., 2011). The experimental
device consists of putting the incubator in opeoplo °
which allows having a flow of air with space heatere
characteristics. The air is warmed in the contaith &
heating resistance. The fan is turned on and all@ws
circulation inside the incubator. The internal temgiure
measurement is based on T-type LM35. The sensor
resistance value is converted to a voltage signdl a
amplified to suit the acquisition board that comimate

with the computer through parallel port DB25. The (pc)

heater output needs to be controlled in order tarob

[Pane | Tt

.

*—H'globle I_ —m

Tresu
air Vair Tlt Zr H gIobIeSi (Tp int eme_T reul)

1 [ngiobie ]
e r/i‘//’ -
il -~ E
= I
— o L] = —
rFaﬁ B (" Heater )
o —— S

Fig. 2: Physical model incubator representing ahth

transfers
Assumption for the model are:

A Compartment is assumed to be homogenous
throughout its material
The air flow in the
considered to be uniform
All heat transfers are one-way

Convective and radiative exchanges are expressed
by a factor of global exchange

The walls of the incubator are modeled by a
resistor with conduction coefficient Balance of
trade with the air resulting node

incubator air space is

d
(1)

the temperature of the system. This is done with th +N(EC)y Vs (To = Treu) + Quent P(1)

phase angle control provided by a microcontrollsz P
16F77. A RS232 link is used to communicate between
the controller board and the computer.

Physical model for incubator: In the literature, several

The complexities of the physical model, especially

those regarding the transfer by conduction through
walls and different materials inside and outside th
incubator,

makes difficult their holdings for the

physical models of the incubator have been magdlentification and control. To take into accounesa
(Taweel and Amer, 2006) but which of them is suiab COMPlexities and uncertainties, the system is s&ea
for control synthesis? To answer this question, wenathematical model and the recursive estimation
began by gathering and analyzing knowledge of th@pproach is adopted to estimate parameters inineal

dynamic behavior of process. This analysis leadbdo
definition of the model structure Fig. 2.
The phenomena occurring in the heat of thep
incubator are as follow: c
%
* The convective exchange with the outside air
» The radiative exchange with the outside air
» The convective exchange with the inside air Si
* The radiative exchange between the walls

HGLOBAL

Tp.interne

Nomenclature;

Density of air, kg.17?

Specific mass capacity g
Volume, ni
Convective
W.m K™
Exchange surface,’m
Air temperature near the walls, K
Temperature resulting node, K

and radiative exchanges,

«  Transfer by conduction through completely opaquel result
walls n
236

Air change rate, frsec*
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To Outside air temperature, k B(k) =8(k —1) + K(k)y(k) - ¢(k)"0(k - 1) (5)
Quent Flow ventilation heat, Asec”
P(t) The applied power proportional to the 8 is a vector of parameters to be identified andiglan
resistor heating, Watt observation vector which are given by:
RESULTS 8" =[a,,8..3,h .8 ,.p (6)

Identification: Generally, there are three categories of ;71\ =1 vk -1\ —ulk — 2) — v(k—
models that can be used to simulate and préuic ¢ (k) =[y(k ~1).=y(k = 2)..= y(k=n)
incubator environment. The first category is b~ U(k=17d)-.u(k=d=m)
the concept of energy and mass balance (Taweel and
Amer, 2006; Tourneuet al., 2009). The drawback of
this method is that these models are difficulpt in

(7)

The algorithm with constant forgetting factor ds t
chooséry (k) =2,1 andiy(k) = 1, typical values for-1 is
practice. The second category is based on thgFPC T I TERE DOk Lo O o
with prior knowl%dye of the svstem écessar data. This is why-1 is known as the forgetting dact
P =g Y L Y- The maximum weight is given to the most recentrerro
The third category is based on computation intetiice ; . - ; P
such as fuzzy clustering, artificial neural netwsodnd Th's type of profile suits the |dent|f|(_:at|on ofostly
genetic  algorithm. Oliveira et al. (2005) used time varying systems (Landau and Gianluca, 2006). T
orthogonal basis functions to model the neonata?xc'te the heating resistance of the incubatoruses a

. do random binary sequence. This sequence is
incubator prototype and Abbas and Leonhardt (00g°>SY 4 .
al. used ap systg?n identification of neonatal ind:agylba generated programmatically. After several trialss w

based on adaptive ARMAX Technique. In this sectionfoun.Ol that the dynamic of warming is much fastemth
an identification procedure for the newborn incobas qoolmg. Thus, we were forced to extend thg Seqeenc
little cooling. Figure 3 shows the evolution of the

achieved and a linear model is computed. Althoug .
temperature characteristic is a continuous varjailble rignec%%i\rt]g?toat%%“ggcit(;ilzﬁfg'sh-lc—)t;\(/en irrflsé?go nje from the

was measured and registered at time steps. . . .
. . . The model developed is written as follows:
In this discrete domain, the incubator systembmn

modeled in several ways, such as auto regressidelmo y(k) = 0.9458y(k-1) + 0.0308y(k-2)

+0.0194u(k-4) + 0.0071u(k-5) + e(k) (8)
y(k) =-a y(k=1)..- g y(k- n) @) Figure 4 shows that the incubator has two
-b, y(k—1-d)..+ b, u(k- m- dy} e(k dynamics: a dynamic heating and cooling. Hysteresis

effect plays a very important role in this dynamic.
With d: delay, u: input system, y: output system!ndeed, hysteresis is the difference between theecof

and e: white noise. Pseudo-Random Binary Sequendése and fall. The latter is caused by the therimetia of
(PRBS) signals were designed as input u(k) and th¥arious elements of the_ mcybator which is also
temperature was designed as output y(k). Alrésponsible for the nonlinearity of T = f(P) (T:
experimental data were recorded with a sampling €mperature, P: Power) which sometimes makes yt ver
period of 10 sec. The selection of the appropiatters difficult to model this relationship by a mathencati

of the ARX model is crucial and it has been perfedm €duation. This phenomenon explains the modelingy err
by using Akaike Information Criterion (AIC) in the to be taken into account later as a parametricrtaingy.

conventional and standard approach (Fukettaal.,  |ndirect Adaptive Generalized Predictive: Control
2006). The parameters of the ARX model were updatef AGPC) design: The synthesis of the Generalized
on line using Recursive Least Square (RLS) methogrredictive Controller (GPC) suggested by Clagkal.

(Landau and Gianluca, 2006). (1987). This method was used successfully in imilst
applications of various forms (Richalet al., 1978;
P(K)= 1 [P(k=1)- Dion et al., 1991; Dumuret al., 1997; Filatov
A (k) Unbedhauen, 2004). The approach of generalized
P(k-1)p (K" (k)P (k- 1)] ©) predictive control is based on a dynamic modelypét
" (K) CARIMA (Controlled Auto-Regressive Integrated
Al—(k)+¢(k)¢T(k)P(k—1) Moving Average), given by the following form:
2
-1 —qqd -1 — 1)+ <1 e(k
K(K) =P(K)0(K) @  A@YO=aTBE Uk Dr C@ T (9)
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Fig. 4: Real and estimated temperature

y(K) is the system output, u(k) the system inp(k) ehe
uncorrelated random sequence)(q ™ 1-g*
corresponds to an integral action. Its presencéhén
direct channel allows a zero error in steady statee,
A@@™), B(g™Y) and C(q") are polynomials. In our case
the polynomial C is equal to 1.

Cost function: The generalized predictive control
based on the minimization of a quadratic criterona
sliding horizon, which involves a term related tet
difference between the predicted output sequende a
the sequence of future control (Clasdteal., 1987). The
criterion is given by the following relation:

3= ek ) =9k + )

! (10)
Y AU (k+j-1)

With:

y(k) = The output value predicted at time k
Y¢ = The set points values at time k
Au(k) = The increment of control at time k
N; = The minimum prediction horizon

N, = The maximum prediction horizon
Nc = The control horizon

The control-weighting factor
238

Prediction of the system output: Consider the output
expressed by the following equation:

yF (K) = F(d)y(K) (11)

Using both Eq. 9 and 11 the output at time (k + j)
will be:

yF(k+ )= 7F(f(zﬁf)q_l)u(k+ k—d-a)

LF@heah)
A@@™HA@™)

(12)
e(k+))

By applying the Euclidean algorithm on the second
term of Eq. 12 we get:

G;(q")
A MA@

i

F@HC@)_,

A@HaEH AT

(13)

Using Eqg. 9, 13 and we assuming that the term
related to the disturbance is zero, the optimatlipter
of the output is written as follows:

_Li@@"B@ha@™)
C(g™)
G;(q?)
k
cqh v

A second Diophantine equation decompose the
predictor in two terms: a term based on the current
output, old orders, the system output and a setzmal
dependent on future orders.

YF(k+)) =
(14)

ukk+j-1-d)+

9™ - oqtya e RL@D) .
C(q—l) J(q )+q C(q_l) ( )
With:
o(@)=L,(@")+B(a); (16)

The optimal predictor of the output is written as
follows:

JF(k+]) =H;(@M)A(g)u(k+ j-d-1)
G;(g™) R q)
C(a™) C(g)

(17)
A(@u(k-1)

y(k)

where, Hj(@), Gj (479, Ri(d’) et Lj(d") are
polynomial solutions to the Diophantine equation
(Astrom, 1983).



Am. J. Engg. & Applied i, 4 (2): 235-243, 2011

The matrix formulation is represented in (18):

G, (k) + Rau(k-1)

(k) = A AU(K 18

9(k) = H,aU(K) ) (18)

With:

AU =[Au(k)..Au(k+ N, - 1)}, (19)

G =[G,y (@™)-Gypuq () (20)

R=[Rp,q(q™)...Ryzq (@) (21)
h, 0 0

O L (22)
hN2—1 hN2—2 hN2— NC

Law order: We can write the criterion J in matrix form:
I=[Y(K) =y, (KI'TY (K) -y ()] +AU(Kk) TAU(k)  (23)
With:

Y, =[y (k +N, +d)...y (k+ N,+d)] (24)

The optimal control law is derived from analytical
minimization of the previous cost function. Onlyeth
first control value is finally applied to the syste

-G, (k) - Rau(k-1)
c(@")

u(k) = u(k= 21+ nec [Y, (k) + 1 (25

Which: m[..represents the first line of
(HTH+AI)™A™ and | is diagonal matrix of size
Nc*Nc

w5 9 (26)

Adaptive control: The synthesis of the previous
predictive control considers that the parameterghef
process are fixed, but in reality this is not these

parameters are updated at each sampling period for
tuning of the GPC control H} G, Rj and Lj . The
procedure is iterated while the new output is amdd.

The application of adaptive control is based on a
priori knowledge of the process. The start of the
command is rather difficult. Both approaches oftstg
the adaptive predictive control most used in peacti
are: starting with an estimated independent comnaand
starting with adjusting the sampling period. In case
we use the first approach. This technique recomsend
the use of an independent monitor of the estimated
parameters at the outset. Therefore predictive tagap
control is used only when the estimates converges t
the true values. This avoids the oscillation cdntro
signal due to rapid variation of parameters esthat

Control problem statement: When there are no
disturbances and noise and when the parameters are
constant most adaptive control algorithms have good
convergence and stability. In addition, we hope this
performances will be preserved in presence of nioglel
error and presence of delay. This error can be an
hysteresis effect that characterize most of thermal
system which cause the change of system dynamics.
However, in the presence of bounded disturbances,
noise and time-varying parameters not even stglufit

the recursive estimation algorithm can be guarahtee
So, the use of the RLS estimated without modifarati
can be dangerous especially in the absence ofspmrsi
excitation in presence of slow perturbation and lsma
modeling errors. Therefore, it must modify the
estimation so that it can not diverge. Given:

y(k) = q:z(ﬂ;)u H9u(k / -1) + e(k) 27)

With e representing an external perturbation and
the operator H- which is arbitrary (linear or nedyiant
or not) (Chaoui and Saad, 2001). We assume that:

B(1)

e The static gain—=
AR

«  A(g? and B(g") are coprime
« A7) is a hurwitz operatoA(z?) =0=|4 <"

* Areal numberp* such agg|<p*

These parameters vary over time a slow variation  The regression form of the model is as follow:
affecting the controller performance. The adaptive
predictive controller which is proposed by the bloc y(k) =¢(k)™ +u (28)

diagram flow is an indirect controller (Astrom, 198

De Mathelin and Lozano, 1999). The least-squares On the other hand:
(RLS) algorithm is applied to estimate the unknown

system parameters A" and "B , after that the estitdha

C,=[6,..8,OR*"/8,+..+6,>0 (29)
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C,={6,0R*"'/|8]| < p*} (30)

C*=C NG (31)
C* is a known convex and compact:

The Least squares algorithm with projection is a
follow:

T
P9=5 g 1P0 D
P(k-1¢ (kX|)T (K)P(k- l} (32)
M) 0T k)P K-1)
A (K)
K(k) = P(Kp(K) (33)
8(k) = 8(k 1)+ K(K)(y(k) - (k) B(k 1) (34)
8(k) = projC* B(K)P ) (35)

u(k) = K,e(k)+ K 3 _e()+ K,(e(k)- e(k- 1)) (39)

where, K, Ki and K; represents respectively the
proportional gain, the integral gain and the ddiea

sgain. Great effort is necessary to choose the rightes

of gain. The following PID parameters values were
used in this study K= 7.2, K= 0.1 and i = 2.5. This
choice is based on Ziegler-Nichols tuning rule (daun
and Gianluca, 2006). Concerning the IAGPC algorjthm
the model parameters were initialized by zero wscto
and the covariance matrix P(0) = 106 with fixinge th
forgetting -1 0.95. We fixed the parameters of
predictive control synthesis essentially by the
simulation: the minimum prediction horizon N1 =tkie
maximum prediction horizon N2 15, the control
horizon NC = 1 and the control-weighting factor 1=
More detailed information may be found in (®kar
et al.,, 1987). The robust identification algorithm and
the GPC programme have been developed in Matlab

This algorithm is guarded against any divergence; 4 The estimate of the heating model parameteds a

estimated by means of a projection within conveix se
COR®™to ensure that this projection preserves the

qualities of the original estimate, we must enstine
convex contains the true vector’s parameter.

the update law parameters are performed with a step
sampling of 10s. Responses of the temperatureeinsid
the incubator controlled by IAGPC, PID and ON-OFF

We assumed that the lower Ij and upper Sj limits o controller are given in the following figure.

each element j are known so that | < § where $and

LOR andj=1,------ , 4.
8(k)" =[6,6,6,6 (36)
= [ & by by (37)

DISCUSSION

In the present study the ON-OFF control showed
higher fluctuations in the air temperature. Thesetf
band between the set point and the inside temperegtu
4C. This fluctuations decrease and the ON-OFF mycli

The orthogonal term-by-term projection is thenis reduced if a hysteresis band was adopted. Oatkige

given by:

8,16 <

1,6, <1
S.§<6

8(k) = projc* (8(k)P) = (38)

Result and discussion of |IAGPC, PID and on-of
controllers: The IAGPC, PID and ON-OF controllers
have been applied to the incubator system in peécliat

room. The objective of this study is to find a more
appropriate control law to obtain a thermal comfort

environment. Real time results will give the linaf
each controller. The simplest control algorithm athi
does not need any tuning effort is the ON-OF cdntro
So the control input is equal to 100 percent of @ow
when the temperature inside the incubator is belmv
set point furthermore, it is OFF u(k) = 0.

The PID control is given by this expression:

240

side the offset band caused by IAGPC and PID is
negligible. The rise time with the On-OFF controlleas
250s, with the PID was 1500s and with IAGPC was 600

Figure 5 represented the indirect adaptive
generalized predictive control strategy witch the a
recursive estimation approach was adopted to efgima
in real time the system parameters and to adatiteat
same time the GPC controller parameters.

Figure 6 shown a good performance control GPC
when there are no disturbances and noise and vhgen t
parameters are constant. The temperature is clmsed
the different set points. For Fig. 6-8, it is cl¢hat the
behavior of the IAGPC is greater than others two
controllers in many aspect. The IAGPC has a speed
response to close to the different set points. The
robustness of this strategy can be observed through
overshoot and the fluctuation rejection, this ig tie
case of PID or ON-OFF controllers. This can be
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explained by the predictive effect of the GPC: whiemn 10 } ——r— T
heater is closed, (when the temperature is belevsét AU W
point), the effect of heater continues to be fEince | /WWWWVW VWMWWWMWMW
this effect is not predicted in conventional PID@IN- 2 30 ;..,m ~—Temperature
OFF control, the calculating of the cooling actismot £ %Wﬁ%ﬁww i — Setpoint
appropriate, so showed the oscillation. Now leslamswv 2 25|

in Fig. 8-9 the performance of PID and IAGPC whea t § "

incubator clappers open for regular treatment sagh B

providing medicine, nutrition or visual inspectiaf 15 R T S T
newborn. From the Sample 500, the hand ports was 0 100 200 300 400 500 600 700 800 900 1000
opened. The temperature initially dropped therdritiee @

optimal value is 10 min for IAGPC and 13 min fobRI
So through Fig. 9 we can conclude that the IAGPC : : ;
is more efficient than PID in disturbance rejection — On-off control
Most of the time the controller is designed to tnee == Setpoint
specifications in steady state. In practice, therafon of
i

an incubator is not maintained at a constant speetd,

evolves with the physiological status of the newbor
Some examples of mathematical models based or*

simplified configuration of human body are: Gagge's

Command

tow mode model (core and shell), Wyndham and 0 100 200 300 400 500 600 700 800 900 1000
yamamoto’s tree part model. In this study, an adapt Sample
model was considered so that the thermal dynamic (b)

properties of the premature infant were evaluatgdgu

adaptive system identification. This technique é&yv Fig. 6:Response of the incubator heating system
important to update the parameters model that depen controlled by ON-Off controller

on infant related parameters such size maturitgllev

metabolic factor, maturity of skin body development  *° ro T
also for changing incubator characteristics likegkd 5 40 _
wall, double wall. In the figures we show the 7% ‘
importance of the adaptive technique when a chisige £ 30 '
made on the structure of the model. The IAGPC has £ 1 i
succeeded to maintain stability and reduce the =
fluctuation but not in the case of the GPC. 1 1
Comparisons among these three controllers appliec g T
to the incubator system are _Summari_zed. Table 1 0 100 200 300 400 500 600 700 800 900 1000
demonstrate that the IAGPC is superior and more (@
appropriate than the other controller
160 T T T T T T T T
Synthesis / Estimate 140 — Setpoint
_}l predic’five }‘_. parameters 120 e JAGPC
_regular \_process 5100 ‘ i 12 1
80 : —— .
. Gy R, L _* 5 o ‘ .
JBJ (e AB - ( =
[ Setpoint | Ye (™) ( ( Process d 0 ' ' i
: Y . fRegular |
| trajectory f>_’1 R }_"' J 20 1
\ . / L 0 1 L L L 1 | L 1 |
J 0 100 200 300 400 500 600 700 800 900 1000
Sample
(b)

Fig. 7. Response of the incubator heating system
Fig. 5: Structure of the IAGPC controlled by PID and IAGPC controller
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