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Abstract: Problem statement: Thermodynamically, particles in composites will arrange in a way 
such that the Helmholtz free energy is minimized. However, even a single structure has the lowest free 
energy, it should not ignore the probability of other structures having larger energies to occur, although 
at small chances. Approach: All possible arrangements of particles in the composites, therefore, must 
be taken into account in the theory or simulation development. Results: The composite energy 
depends on the interaction between components in the composites. To consider the effect of 
interactions on energy, in this study we used a simple Ising model incorporated with the Bragg-
Williams approximation. We used the model to predict the average packing fraction and the 
percolation threshold in composites as well as other quantities related to percolation phenomenon. 
Conclusion/Recommendations: We found several predictions that have not been reported by previous 
authors. This model can be important in the understanding conductivity development in electrically 
conductive adhesive composites. 
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INTRODUCTION 
 
 The properties of composites of particles dispersed 
in continuum media have been reported by many 
authors several decades, covering numerous 
composites, such as conductive particles dispersed in 
insulating adhesives (electrically conductive adhesives) 
for microelectronic applications (Mikrajuddin et al., 
2000; Yim et al., 2008; Lin and Chen, 2008; Li et al., 
2008; Lin and Chiu, 2008; Morris and Lee, 2008; 
Zenner et al., 2008; Novak  et al., 2004; Inoue et al., 
2008; 2009; Inoue and Suganuma, 2007; 2009; Kim 
and Paik, 2008; Mundlein et al., 2002; Li et al., 1993; 
Tongxiang et al., 2008; Lee et al., 2005; Sander et al., 
2002; 2003), insulating particles dispersed in Ionic 
adhesive for use in solid batteries or fuel cells 
(Mikrajuddin et al., 2000; 1999), colloidal systems (Lu 
et al., 2006; 2008), pharmaceutical tablets (Stromme et 
al., 2003) and other composites such as fibers in 
concrete (Newman, 2002) and fly ash-concrete (Mohan 
et al., 2012). One interesting phenomenon exhibited by 
these composites is the occurrence of percolation 
threshold, a quantity which divides two strongly 
different states, such as conductive and insulating states 
(Mikrajuddin et al., 2000; 1999), magnetic and non-

magnetic states (Thorpe, 1978), crystal and amorphous 
states, Surprisingly, in recent progress, the percolation 
phenomena are also applied to other fields, in the past 
of which likely did not show any relation with material 
composites such as communication systems such as the 
internet and other Peer-To-Peer networks (Pastor-
Satorras and Vespignani, 2007), dynamics of epidemic 
spreading (Anderson and  May, 1992; Meyers, 2007), 
HIV infection to AIDS (Kamp  and Bornholdt, 2002), 
social networks (Chen et al., 2007a; 2007b). 
 Most theories and simulations developed so far 
confirmed the coordination number, γ, (number of 
particle nearest neighbors) affects the percolation 
threshold, vc . Generally, the percolation threshold 
decreases when the coordination number increases. 
Some authors reported that the percolation threshold 
depends on the coordination number as vc = D/γ(D-1) 
with D is the dimensionality (2 for two dimensions and 
3 for three dimensions)  (Chelidze,  1982). Using the 
modified effective medium approximation, we 
previously reported that the percolation threshold 
occurs at cv f / 2 /= γ , with f is the packing fraction 

(Mikrajuddin et al., 1999) and by adopting a theory for 
sol-gel development in polymerization for describing 
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the connectedness of particles in composites, we have 
predicted the occurrence of the percolation threshold at 
vc = f/ (γ-1) (Mikrajuddin et al., 2001).  
 In most theories and simulations, the arrangement of 
particles in the composite was taken as an initial axiom. 
For example, some authors treated the particles have been 
arranged in a simple cubic structure and other authors 
assumed the particles have been arranged in a body 
centered cubic structure, prior to theory or simulation 
development. Indeed, this assumption may raise some 
questions. For example, how can the particles in the 
composite arrange at a certain structure? This question has 
become more significant when applied to liquid-like (easy 
flow) composites, such as colloidal systems, where 
microscopically the particles may displace locally. Slight 
displacement in the particle position can create any 
chances for the occurrence of different arrangements at 
different times or different locations. 
 The assumption that the particles have been 
arranged in a specific three dimensional structure is 
equivalent to assuming that the particles have 
undergone a process like a self organization or 
externally induced organization. However, it is hardly 
to accept the particles in the composites have passed 
such organization history. Instead, the particles in the 
composite may develop arbitrary structures. This is 
likely one reason why a model to describe the 
inhomogeneous particle distribution in the composite 
and the effect of the eddy current have been proposed 
(Vinogradov et al., 2009). In addition, based on 
numerous simulations and observations reported so far, 
no clear evidence the particles were arranged in a 
certain structure when forming large clusters (Lu et al., 
2006; 2008; Zaccarelli et al., 2008).  
 Furthermore, recent reports might strengthen 
questionability of the above axiom. For example a “non 
permanent bond” model in colloidal systems as 
simulated by Coniglio et al. (2004) and Candia et al. 
(2005) might suggest that the arrangement of particles is 
possibly not fixed. They therefore hypothesized that the 
bonds between colloidal particles have a lifetime, which 
is extremely high at low temperature and decreases as the 
temperature increases. The finite lifetime bonds were 
also introduced in the study of a lattice model for 
gelation phenomena (Zaccarelli et al., 2009). 
 Thermodynamically, the particles in the composite 
will arrange in a way such that the Helmholtz free 
energy is minimized. However, even a single structure 
has the lowest free energy, it must not ignore the 
possibility of other structures having larger energies to 
occur, although at small probabilities. All possible 
arrangements, therefore, must be taken into account in 
the theoretical formulation and the microscopically 

observed arrangement should be the statistical average 
of all the possible arrangements. Since each 
arrangement is attributed to a specific coordination 
number, this speculation leads to the existence of an 
average coordination number. Indeed, the concept of 
average coordination number is logically accepted 
when we consider some previous reports related to 
average bond connection between particles per nodes 
(Dhydkov, 2009; Blumenfeld et al., 2005) and the 
concept of non permanent bonds (Coniglio  et al., 
2004). Lagemaat et al. (2001) reported that in porous 
TiO2 film, at a film porosity of 58%, about 10% of 
particles have two neighbors, 25% of the particles have 
four neighbors and less than 1% of the particles have 
eight neighbors and the average coordination number is 
4.1. These reports clearly proved the presence of a non 
fixed coordination number in composites. 
 At the present work we will focus our 
consideration on the conductivity development in 
electrically conductive adhesive composites. The 
probability of the occurrence of a specific arrangement 
of particles depends on the configuration energy, which 
is dependent on the inter particle interaction, inter 
adhesive interaction and interaction between particle 
and adhesive. To consider the effect of interactions on 
the configuration energy, in this study we used a simple 
Ising model incorporated with the Bragg-Williams 
approximation. The developed model was then used to 
predict the average packing fraction and the percolation 
threshold in the electrically conductive adhesives as 
well as other quantities related to percolation 
phenomenon. With best our knowledge, no report has 
been published by any authors on this topic. 
 

MATERIALS AND METHODS 
 
 We divide the composite into lattices. Each lattice 
point is occupied either by a particle or a matrix 
element. All possible lattice structures can occur in the 
composite, the probability of which depends on the 
configuration energy. 
 Assume the number of lattice points is N and the 
number of particles is Np. The number of lattice points 
occupied by matrix elements is a Nm = N-Np. Suppose 
the interaction energy between particles is εp, between 
matrix elements is εm and between particle and matrix 
element is εpm. In the composite, three kinds of contacts 
occur, i.e., particles-particle contact, matrix-matrix 
contact and particles-matrix contact. We assume the 
number of particle-particle contacts, matrix-matrix 
contacts and particle-matrix contacts as Npp, Nmm and 
Npm, respectively. The energy for a certain 
configuration {Npp, Nmm, Npm,} can be written as: 
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pp mm pm pp p mm m pm pmE{N ,N ,N } N N N= ε + ε + ε   (1)  
 
 By a simple calculation (Huang, 1987), we can 
rewrite the configuration energy in Eq. 1 as: 
 

pp p 1 pp 2 p 3E{N,N ,N , } E N E N E Nγ = + γ + γ   (2) 

 
 With, E1 = εp + εm - 2εpm , E2 =  εpm - εm and  E3 =  
εm/2. 
 The Bragg-Williams approximation assumes the 
relationship of Npp/(γN/2) ≈(Np/N)2 to hold (Huang, 
1987). By introducing a long-range order parameter, L, 
through the following relation Eq. 3:  
 

p(1 L) / 2 N / N+ =   (3) 
 

with, -1≤ L ≤ 1, Eq. 2 can be written as: 
 

pp p
pp p 1 2 3

2

1 2 3

N N
E{N,N ,N , } E ( N / 2) E N E N

N / 2 N

1 L 1 L
E ( N / 2) E N E N

2 2

   
γ = γ + γ + γ   γ   

+ +   ≈ γ + γ + γ      

 

 
or the energy per site is: 
 

 21 1 2 1 2
3

E E E E E E
L L E

N 8 4 2 8 2

    ≈ + + + + + γ    
    

  (4) 

 
 Here L depends on γ. For the same volume 
fraction, different arrangements (different γ) lead to 
different L. We can then simply write the configuration 
energy in Eq. 4 as: 
 
E( ) ( )γ = Ω γ γ   (5) 

 
With: 
 

21 1 2 1 2
3

E E E E E
( ) N L( ) L( ) E

8 4 2 8 2

    Ω γ ≈ γ + + γ + + +    
    

  (6)  

 
 The energy expressed in Eq. 5 will be used for 
estimating the configuration probability. 
 We assumed the particles are spherical in shape. 
For each arrangement of particles in the lattice, there is 
corresponding parameter of packing fraction, ƒ. If v is 
the volume fraction of particle we can show: 
 

pN v

N f
=   (7) 

 This relation states that if all lattice points are 
occupied by particles (Np = N), the volume fraction of 
particles is exactly equal to the packing fraction (v = ƒ). 
Based on Eq. 3 and 7, the long range order parameter 
depends on the volume fraction as: 
 

2v
L 1

f
= −   

  
 For three dimension arrangements, we assumed that 
only diamond (γ = 4, ƒd = 0.340), simple cubic (γ = 6, =  
ƒSC 0.523), body-centered cubic (γ = 8, ƒbcc = 0.680), face-
centered cubic and hexagonal closed packing (γ= 12, ƒƒcc = 
= ƒhcp 0.740) possibly occur. 
 We proposed here, if the volume fraction v is less 
than ƒd all arrangements possibly occur. If ƒd < v < ƒsc, 
the diamond structure is absent since the particle 
content is higher than the maximum content allowed for 
diamond arrangement. If ƒsc < v < ƒbcc, the diamond and 
simple cubic arrangements are absent and if ƒbcc < v < 
ƒfcc = ƒhcp, only the face-centered cubic and hexagonal 
close packing are allowed. 
 We now define the average coordination number of 
different volume fractions of particles as Eq. 8: 
 

 

( )

( )

(f v) e

(v)
(f v)e

βΩ γ γ
γ

γ
βΩ γ γ

γ
γ

Θ − γ
γ =

Θ −

∑

∑
  (8)  

 
where, Θ(x) is the Heaviside step function, satisfying 
Θ(x) = 1 if x>0 and Θ(x) = 0 if x≤0 ƒγis the packing 
fraction for arrangement with coordination number γ 
and β = -1/kT with k is the Boltzmann constant.  
 For simplicity, we selected the energy reference 
such that εm = 0. This selection leads to E1 = εp-2εpm, E2 
= εpm and E3 = 0. With these assumptions, Eq. 6 can be 
rewritten as: 
 

p pm p p pm22 2
( ) N L( ) L( )

8 4 8

 ε − ε ε ε + ε   
βΩ γ ≈ β γ + γ +    

    
 

 

( ) ( )21 2 L( ) 2L( ) 1 2 = −ϕ − ξ γ + γ + + ξ   

 
with, ξ = εpm/εp and φ = Nεp/8kT. 
 
 We used this model to estimate the effect of 
particle volume fraction on the conductivity of 
electrically conductive adhesive composites. Previously 
we have proposed a modified effective medium 
approximation to calculate such conductivity using the 
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following Eq. 9 (Mikrajuddin et al., 1999; Abdullah et 
al., 2003): 
 

pp e pm e
pp pm

pp e pm e

mm e
mm

mm e

P P
( / 2 1) ( / 2 1)

P 0
( / 2 1)

σ − σ σ − σ
+

σ + γ − σ σ + γ − σ

σ − σ+ =
σ + γ − σ

  (9)  

 
with Ppp is the probability of particle-particle contact Ppm, 
is the probability of particle matrix contact, Pmm, is the 
probability of matrix-matrix contact, where Ppp + Ppm + 
Pmm = 1, σpp is the conductivity at contact point between 
particles σpm, is the conductivity between contact point 
between particle and matrix σmm, is the conductivity at 
contact point between matrix elements (the conductivity 
of adhesive) and σe is the effective conductivity of the 
composite. 
 

RESULTS 
 
 We did simulations for different values of ξ 
(fraction of particle-matrix interaction energy and 
particle-particle interaction energy) and different values 
of η (represents the strength of interaction energy). 
 Figure 1 shows the effect of volume fraction of 
particles in the average coordination number when taking 
η = 2. The positive sign for η means that εp is more 
positive than εm, to state that replacement of matrix 
element with particles increases the configuration energy 
(the attraction force between particles is weaker than 
between matrix elements). 
 

 
 
Fig. 1: Effect of volume fraction of filler on the 

average coordination number when η = 2.0 for 
differences ξ. Top to bottom are curves for ξ = 
0.1, 0.25, 0.5, 0.75, 1.25 and 5.0 

 The effect of η of the average coordination number 
is shown in Fig. 2. This figure shows the effect of filler 
volume fraction on the average coordination number 
when η = 0.1 for different ξ. 
 We also inspected the effect of negative values of 
η on the average coordination number. Figure 3 and 4 
were obtained using η = -2 and η = -0.1, respectively. 
  Figure 5 shows the conductivity as a function of 
volume fraction of particles for η = 2 and Fig. 6 for 
η = 0.1 at different ξ. Apparently, the conductivity 
percolations occur at volume fractions between 0.2 
and 0.4. The exact location of the percolation 
threshold  and  how  to find it will be explained later. 

 

 
 
Fig. 2: Effect of volume fraction of filler on the average 

coordination number when η = 0.1 for 
differences ξ. Top to bottom are curves for ξ = 
0.1, 0.25, 0.5, 0.75, 1.25 and 5.0 

 

 
 
Fig. 3: Effect of volume fraction of filler on the average 

coordination number when η = -2.0  for different 
ξ. Bottom to top are curves for ξ  = 0.1, 0.25, 0.5, 
0.75 and 1.25 
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Fig. 4: Effect of volume fraction of filler on the 

average coordination number when η = -0.1for 
different ξ. Bottom to top are curves for ξ = 0.1, 
0.25, 0.5, 1.25 and 5.0 

 

 
 
Fig. 5: Effect of volume fraction of filler on the 

electrical conductivity when η = 2.0 for 
differences ξ. Right to left are curves for ξ = 
0.1, 0.25, 0.5, 0.75, 1.25 and 5.0 

 
The volume percolation decreases when ξ increases. 
For large η, the percolation thresholds for different ξ 
occurs at a wider range of volume fractions. 
 

DISCUSSION 
 
 We identified in Fig. 1 a discontinuity in the 
average coordination number at some volume fractions. 
The existence of this kind of discontinuity has also been 
discussed by Zhang et al. (2008; 2009). 

 
 
Fig. 6: Effect of volume fraction of filler on the 

electrical conductivity when η = 0.1  for 
differences ξ. Right to left are curves for ξ = 
0.1, 0.25, 0.5, 0.75, 1.25 and 5.0 

 
 At high ξ, or εpm>>εp, the average coordination 
number quickly decreases to 4 (the coordination 
number of the diamond structure) when increasing the 
volume fraction of particles. A high ξ means two 
contacting particles are bound strongly. The binding 
energy between particle and matrix is more positive 
than the binding energy between particles, so that in 
order to minimize the composite free energy, the 
arrangement of particles in the composite must be in 
such a way that the contact area between particles and 
matrix is as small as possible (contribution of contact 
surface energy must be suppressed) and this is found 
when the arrangement is in small coordination number 
(which leads to small contact surface). The volume of 
particles per cell is ƒ and the contact area of a particle 
and matrix in a cell is s ∝ f2/3, to prove that reducing in 
the coordination number will reduce the packing 
fraction and therefore will reduce the contact area. As 
the interaction energy between particles is more 
positive than the interaction energy between particle 
and matrix (ξ< 1), the composite will increase the 
contact area between particles and matrix as much as 
possible to reduce the free energy. It is reached by 
increasing in the coordination number so that the 
number of particles in a lattice cell increases (leads to 
increasing the surface area). It results in the increase in the 
coordination number. As shown in Fig. 1, when ξ < 0.5, 
even the simple cubic arrangement does not occur. Only 
the body centered cubic (bcc) and face centered cubic 
(ƒcc) or hexagonal closest packing (hcp) arrangements can 
occur. The bcc arrangement occurs when v > 0.68 and the 
ƒcc and hcp occur only when v > 0.68.  
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 At low interaction energy between particles,η = 0.1, 
low coordination number is hardly to occur (Fig. 2). The 
diamond structure is only obtained for ξ> 5. For  ξ < 
0.75, even the simple cubic arrangement does not occur. 
The  η small means that the interaction energy between 
particles approaches the interaction energy between 
matrix elements. 
 When the interaction energy between particles 
precisely equals to interaction energy between particles 
and matrix and between matrix elements we have εp = 
εpm = εm = 0. If this condition occurs, we have Ω = 0 
and the average coordination number becomes: 
 

sc bcc

(f v)

f v f
(f v)

γ
γ

γ
γ

Θ − γ

γ = < <
Θ −

∑

∑
 

 
 The  η small means that the interaction energy 
between particles approaches the interaction energy 
between matrix elements. 
 When the interaction energy between particles 
precisely equals to interaction energy between particles 
and matrix and between matrix elements we have εp = 
εpm = εm = 0. If this condition occurs, we have Ω = 0 
and the average coordination number becomes. From 
this equation we have that if v < ƒd then 〈γ 〉 = 
(4+6+8+12+12)/5 = 8.4, if then ƒd < v < ƒsc = 〈γ 〉  
(6+8+12+12)/4 = 9.5, if fsc < v < fbcc then = 〈γ 〉   
(8+12+12)/3 = 10.7 and if v > ƒbcc then  〈γ 〉= (12+12)/2 
= 12. From this result we identified that the average 
coordination number is a stepwise function of volume 
fraction. This finding has never been reported by other 
authors and had not experimental confirmation yet. 
 Different results were obtained when the energetic 
interaction between particles and between particle and 
matrix element are more negative that the interaction 
energy between matrix elements. In this situation, the 
attractive forces between particles and between particle 
and matrix element are stronger than between matrix 
elements. Many colloidal systems such as those 
investigated comprehensively by Lu et al. (2006; 2008) 
are a class of this composite. The dependence of the 
average coordination number on the volume fraction of  
η = -2.0 is shown in Fig. 3 and four η = -0.1 is shown 
in Fig. 4. 
 Based on Fig. 3, only for very large we can obtain 
the low coordination number until volume fraction of 
0.34 (packing fraction of diamond). For small ξ(< 0.75) 
we did not obtain structures with small coordination 
number, even a simple cubic structure.  

 The condition of  η < 0 implies that dispersing of 
particles into the matrix reduces the configuration 
energy. The most stable structure will be achieved 
when the particle content is as much as possible and it 
is obtained at a high coordination number. The more 
drastic situation was obtained whenη = -0.1 (Fig. 4), 
where structures with low coordination numbers 
(diamond and simple cubic) never appear. 
 Based on data in Fig. 1-4 we can conclude that the 
average coordination number is resulted by competition 
between η and ξ. Large η (large interaction energy 
between particles) tends to produce the low 
coordination number and large ξ tends to produce large 
coordination number. 
 By approximating σpm ≈ σmm we can write Eq. 9 as: 

 

( )pp e
pp pp

pp e

mm e

mm e

P 1 P
( / 2 1)

0
( / 2 1)

σ − σ
+ −

σ + γ − σ

σ − σ =
σ + γ − σ

  (10) 

 
 The solution for σe in Eq. 10 can be obtained easily 
by simply solving the root of a quadratic equation, i.e.: 
 

pp pp
e pp mm

2

pp pp
pp mm

pp mm

P (1 P )
( 2) 1 1

2 2

P (1 P )
1 1

2 2

2( 2)

γ γ −   
γ − σ = − σ + − σ   

   

  γ γ −    − σ + − σ     
      

+ γ − σ σ

 

  
 Let us assume σpp >> σmm. This is the general 
condition satisfied by conducting particles dispersed in 
insulating matrix. If γPpp/2-1≠ 0 we can approximate: 
 

2

pp pp
pppp mm

pp

pp mm

P (1 P )
P1 1

12 2
2

2( 2)

  γ γ −     γ− σ + − σ      ≈ − σ      
+ γ − σ σ

 

  
 We then obtain the following approximation for the 
effective conductivities. If γPpp/2-1 < 0 we have:  
 

pp pp
e pp mm

pp pp
pp mm

P (1 P )
( 2) 1 1

2 2

P (1 P )
1 1

2 2

γ γ −   
γ − σ ≈ − σ + − σ   

   

γ γ − 
+ − σ = − σ 

 

 

 
  or  σe is the same order of magnitude with σmm. 
On the contrary, when γPpp/2-1 > 0 we have: 
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pp pp
e pp

pp pp
mm pp pp

P (1 P )
( 2) 1 1

2 2

P P
1 2 1

2 2

γ γ −   
γ − σ ≈ − σ + −   

   

γ γ 
σ + − σ = − σ 

 

 

 
or σe is the same order of magnitude with  σpp. 
 From this result we concluded that γPpp/2-1= 0   is 
the condition when the conductivity changes abruptly 
from that of the matrix to that of the particles, i.e., The 
condition of percolation. Thus, the percolation threshold 
is the volume fraction when γPpp/2-1= 0 or Ppp = 2/γ is 
satisfied. Using Eq. 3 and the Bragg-Williams 
approximation, the condition for percolation threshold is: 
 

2
1 L 2

2

+  =  γ 
  (11) 

 
 Since the arrangement of particles in the composite 
may have differed γ and different L, here the 
percolation threshold is assumed to occur when the 
averages of γ and L satisfy Eq. 12: 
  

2
1 L 2

2

 +
=  γ 

  (12) 

 
where, 〈γ〉 is given by Eq. 8 and 〈L〉  satisfies 
 

( )

( )

(f v)L( )e

L(v)
(f v)e

βΩ γ γ
γ

γ
βΩ γ γ

γ
γ

Θ − γ
=

Θ −

∑

∑
 

 
 Remember that both 〈γ〉 depend of volume fraction 
of particles. To determine the volume fraction when Eq. 
15 holds, we plotted 2/ 〈γ〉  and [(1+〈L〉)/2]2 as a function 
of v in the same curve as shown in Fig. 7. These two 
curves intersect at the point of percolation. Figure 8 
shows the percolation thresholds as a function of ξ at 
different η. For the three simulation parameters, the 
percolation threshold occurred in the volume fraction 
range between 0.24-0.34. 
 It should be noted that no single percolation 
threshold has been reported by the authors, either those 
obtained numerically or experimentally. Different 
authors reported different percolation threshold. For 
example, based on simulation up to 105 particles in a 
composite, Rintoul and Torquato (1997) shown a 
percolation threshold at φc = 0.2895±0.0005. Sancaktar 
and Liu (2003) showed a percolation threshold of 30% 
in a composite of emeraldine salt polyethylene powder 
dispersed in an adhesive polymer. 

 Wen and Chung observed a percolation threshold 
occurred at sand fractions between 24 and 30% vol. In 
a mixture of sand and cement paste (Wen and Chung, 
2007). Stromme et al. (2003) reported the percolation 
volume of 0.238 and 0.249 for MMC equilibrated at 
45 and 75% RH, respectively. Simulation using 
lattice models on a recursive square Husimi lattice, 
Corsi and Gujrati (2006) found a percolation 
threshold between 0.245-0.25. Novak and Krupa 
(2004) showed the occurrence of the percolation 
threshold at 22% in a composite of synthetic graphite 
particles dispersed  in  an  epoxy-polyurethane  resin.  
 

 
 
Fig. 7: The volume percolation threshold was taken as 

the volume when the curves of [(1+〈L〉)/2]2 and 2 
/ 〈γ〉 intersect. Illustrated here are curves for η = 
2.0 and. ξ = 0.1 

 

 
 
Fig. 8: Effect of ξ on the percolation threshold at 

different η: 0.1 (square), 0.5 (circle) and 2.0 
(triangle). Symbols are calculating results and 
lines are for eye guiding 
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Fig. 9: Effect of ξ on the average packing fraction at 

different η: 0.1 (square), 0.5 (circle) and 2.0 
(triangle). Symbols are calculating results and 
lines are for eye guiding 

 
Very low percolation thresholds are usually observed in 
elongated filler such as carbon nanotube. For example, 
the percolation thresholds between 0.017-0.019 have 
been observed in polystyrene-MWCNT nanocomposites 
(Kota et al., 2007). 
 For all η, the percolation threshold decreases when ξ 
increases. It mentions that the interaction energy between 
particle and matrix element influences the percolation 
thresholds. The same conclusions have been reported by 
Miyasaka et al. (1982); Sumita et al. (1986) and Corsi 
and Gujrati (2006). The increase in ξ means that the 
interaction energy between particles and matrix element 
is more positive that between particles. In order to 
achieve lower Helmholtz free energy, the particles are 
more favorable to create contacts between particles rather 
than between particles and matrix element. Therefore, 
connections between particles take place more easily to 
result a lower in the percolation threshold. 
 It is interesting to see that at low ξ, the percolation 
threshold increases with η and at high ξ the percolation 
threshold decreases with η. All curves belong to 
different η seem to meet at a single point of vc = 0.267 
and ξ = 0.606. This point states that, as long as the 
fraction of energy interactions between particles and 
between particle and matrix element is constant at ξ = 
0.606, the percolation threshold is always vc = 0.267, 
irrespective to the strength of interaction between 
particles and between particle and matrix element. 
 At percolation threshold, Eq. 11 happens. Based on 
Eq. 3 and 7 we can write: 
 

cv1 L

2 f

+
=  

 Therefore, we obtain the average packing fraction 
in the composite as: 
 

c2 v
f

1 L
=

+
 

 
  Figure 9 is a plot of the average packing fraction 
as a function  ξ of at different values of η. The average 
packing fraction decreases with increasing of ξ (when 
particle-particle interaction is more positive than matrix 
elements’ interaction). The average packing fraction is 
also dependent on the interaction energy between 
particles, where the average packing fraction decreases 
with the interaction energy when ξ > 0.45 and decreases 
with the interaction energy when ξ < 0.45. 
 Figure 9 mentions that the packing fraction is not a 
fixed parameter even in a specific composite. Its value 
may change when other parameter in the composite 
changes. The non constant in packing fraction was also 
reported by Kim et al. (2007) in a colloidal gel system. 
Based on information presented in Fig. 8 and 9 we can 
conclude that the average coordination number per 
particles is an increasing function of the packing fraction. 
The same conclusion came from Buhot (1999). 
 

CONCLUSION 
 
 The Ising model combined with Bragg-Williams 
approximation has been used to estimate the percolation 
phenomena in electrically conductive adhesives. The main 
point proposed here was all packing arrangements of 
particles are possible to occur with probabilities that 
depend on configuration energies. We found the average 
coordination number and the average packing fraction 
depend on the volume fraction of filler. The average 
coordination number was also dependent on the strength 
of interaction between particle-particles, between particle-
matrix and between matrix-matrix. We also identified the 
discontinuity in average coordination number at several 
volume fractions.  
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